# Great Marsh Barriers Assessment

Regional Inventory and Assessment of Risk and Impact of Barriers to Flow in Coastal Watersheds of the North Shore of Massachusetts



February 2018





# **Great Marsh Barriers Assessment**

Suggested citation: Kelder, Brian. 2018. *Great Marsh Barriers Assessment*. Ipswich River Watershed Association, Ipswich, MA.

Financial support for this project was provided by the Hurricane Sandy Coastal Resiliency Competitive Grants Program administered by the National Fish & Wildlife Foundation. The project was part of a larger project and managed by the National Wildlife Federation.

Great Marsh Barriers Assessment available online at <a href="http://pie-rivers.org/barriers">http://pie-rivers.org/barriers</a>





# Table of Contents

| Table of Contents                                 | 1   |
|---------------------------------------------------|-----|
| Acknowledgments                                   | 2   |
| Report Overview                                   | 3   |
| The Region                                        | 4   |
| Project Description                               | 6   |
| Structure Types                                   | 6   |
| Dams                                              | 8   |
| Non-Tidal Road-Stream Crossings                   | 8   |
| Tidal Crossings                                   | 9   |
| Coastal Stabilization Structures                  | 10  |
| Methods                                           | 10  |
| Dams                                              | 11  |
| Non-Tidal Road-Stream Crossings                   |     |
| Tidal Crossings                                   | 18  |
| Coastal Stabilization Structures                  | 19  |
| Crossing Replacement Designs                      | 20  |
| Results                                           | 21  |
| Dams                                              | 21  |
| Non-Tidal Road Stream Crossings                   | 27  |
| Tidal Crossings                                   |     |
| Coastal Stabilization Structures                  |     |
| Crossing Replacement Designs                      |     |
| References                                        | 40  |
| Appendix 1 – Coastal Municipality Summary Reports | 41  |
| Appendix 2 – Inland Municipality Summary Reports  |     |
| Appendix 3 – Road-Stream Crossing Designs         | 180 |
| Appendix 4 – Full Result Tables                   |     |
| Appendix 5 – Trout Unlimited Modeling             | 338 |

# Acknowledgments

This report is the culmination of a multi-year process that would not have been possible without the support of an excellent team of funders, partners, staff and volunteers. The National Fish and Wildlife Foundation (NFWF) provided generous funding to support the project through the Hurricane Sandy Coastal Resilience Grant Program. We are grateful to our project partners including the National Wildlife Federation (NWF), Trout Unlimited, Meridian Associates, the Great Marsh Resiliency Partnership and members of the broader Parker-Ipswich-Essex-Rivers Partnership (PIE-Rivers).

We could not have done this work without the support of the National Wildlife Federation which managed the NFWF funding award. Christopher Hilke (NWF) was instrumental in working with the Great Marsh Resiliency Partnership to build a comprehensive project, secure NFWF funding and see all of the project components to completion. Colin Lawson and Erin Rodgers with Trout Unlimited were instrumental to the project, providing the methodology for and implementing the Hydraulic Capacity model. Thanks to Chris Ryan (Meridian Associates) for the many hours and phone calls developing conceptual designs for road-stream crossing replacements. George Comiskey of the Parker River Clean Water Association helped locate a hard-to-find copy of a 1996 tidal crossings report that we used in our review.

We would also like to thank a number of staff members at the Massachusetts Division of Ecological Restoration (DER) for their support in various aspects of the project. Beth Lambert and Kris Houle provided early access and technical support allowing us to incorporate DER's dam restoration potential model into our analysis. Hunt Durey provided a copy of and technical support for the Draft Great Marsh Plan (2006). Tim Chorey provided critical technical support to guide crossing design and contribute materials to guide next steps in the crossing replacement process.

The field component of this project was extensive and sometimes demanding, including work in all weather conditions and battles with ticks, mosquitos and poison ivy. Our seasonal team members who did the bulk of the survey work included Kelsey Davison, Kayla Dorey, Shannon Gentile, Aaron Hume, Emily Korman, Meghan Sullivan, Cassie Tragert and Joanna Yelen. We are also very grateful to the many volunteers who accompanied us and assisted with surveys over the course of the project.

This project could not have been completed without the support of the entire staff at the Ipswich River Watershed Association. A particularly big thanks to Ryan O'Donnell for his help with surveys and managing seasonal staff. Finally, thank you to Wayne Castonguay and Kristen Grubbs for their help connecting with municipalities and reviewing this document.

### **Report Overview**

This report summarizes work conducted as part of the *Great Marsh Barriers Assessment* (Barriers Assessment). The Barriers Assessment is a component of a multifaceted project led by the National Wildlife Federation (NWF) called *Coastal Resiliency Planning and Ecosystem Enhancement for Northeastern Massachusetts* (Resiliency Project). The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and included five separate sub-projects aimed to increase the resiliency of the Great Marsh and the Parker-Ipswich-Essex Rivers Restoration Partnership (PIE-Rivers) region.

The term "barriers" in this report refers to human-made structures that may impede flow, fluvial and coastal processes (dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures). The interruption of important physical, chemical and ecological processes can reduce the overall resilience of our coastal watersheds, making our communities more vulnerable to extreme weather events and our ecological resources less sustainable.

As our region has become more developed, waterways and coastlines have been dotted with more infrastructure and more aquatic barriers. Many of these structures have aged past their design life and are in need of replacement or removal, while others were not designed to effectively pass wildlife or to manage high flows associated with extreme weather. New England has experienced more frequent floods since 1970 (Armstrong et al. 2011), increasing the risk of failure for aging and/or undersized structures. The extreme damage caused by recent large storms, including the Mother's Day Storm (2006), Hurricane Irene (2011) and Hurricane Sandy (2012) has highlighted these risks. These weather events have also drawn attention to the importance of some of the ecosystem services provided by naturally functioning aquatic systems, including flood attenuation and protection against storm surge. The presence of aquatic barriers limits the ability of the system to serve some of these functions.

The Ipswich River Watershed Association (IRWA) inventoried and assessed 1,026 potential barriers across the 280 square mile region as part of the most comprehensive such effort in this portion of New England. The inventory included an extensive desktop GIS analysis, thorough review of information from previous reports and on-the-ground surveys of more than 500 road-stream crossings to supplement existing IRWA data sets. The structures were then assessed and prioritized using screening tools that considered both ecological impact and infrastructure risk. This comprehensive approach provides a novel, regional assessment of barriers in the Great Marsh and its contributing watersheds. This report and the combined results of the screening analyses are intended to be used as tools for local governments, private owners and restoration practitioners to identify sites that warrant further investigation, especially where infrastructure and ecological risk appear to overlap. We hope this will identify opportunities for projects to be initiated and implemented that achieve dual benefits with respect to community resilience and ecological integrity. This framework will allow municipal officials, restoration practitioners and others to identify and further pursue work at sites while considering the position of the site and relative importance within the landscape and watershed.

# The Region

The geographic scope of this project includes the watersheds of the Parker, Ipswich and Essex Rivers (PIE-Rivers) as well as some additional areas in the coastal municipalities of Newburyport and Salisbury, MA. The PIE-Rivers watersheds are the principal contributing watersheds to the Great Marsh Area of Critical Environmental Concern (ACEC) and include much of the city of Newburyport. The study also includes the portion of Newburyport that is within the Merrimack River watershed and the Town of Salisbury in its entirety. These additional areas were incorporated so that the study region includes all of the municipalities included in the Great Marsh Coastal Adaptation Planning effort associated with our work. In total, the project area includes approximately 280 square miles and all or parts of 29 towns (Figure 1).

Portions of seven of the municipalities fall within tidally influenced coastal areas of the Great Marsh study region. These are the Towns of Essex, Ipswich, Newbury, Rowley, and Salisbury as well as the Cities of Gloucester and Newburyport (Table 1). These coastal municipalities may have all four of the barrier types assessed in this report. The remaining 21 municipalities are in the non-coastal portion of the study region and therefore by definition have no tidal crossings or coastal stabilization structures (Table 2). A number of municipalities (e.g. Manchester, Beverly) are located on the coast, but do not have coastal zones within the study region. These are considered inland municipalities in this report, as our analysis of them does not include coastal areas.

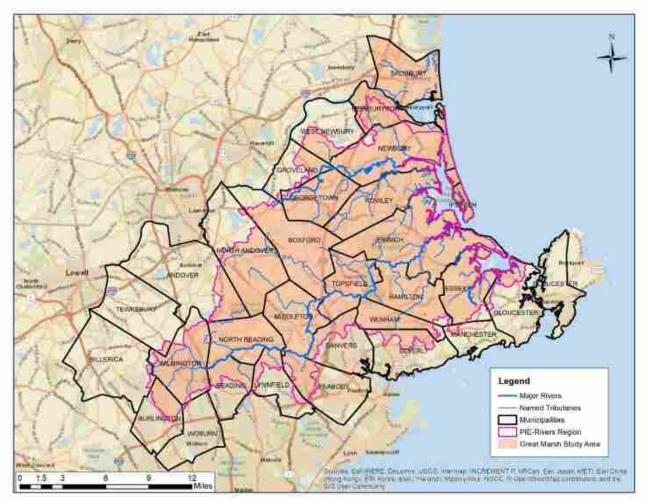



Figure 1. Map showing the region covered by the Great Marsh Barriers Study.

|             | Area           |      | Non-Tidal Stream | Tidal     | Shoreline     |
|-------------|----------------|------|------------------|-----------|---------------|
| Town        | (square miles) | Dams | Crossings        | Crossings | Stabilization |
| Essex       | 13.0           |      | 38               | 12        |               |
| Gloucester  | 2.9            |      | 3                | 3         | 1             |
| lpswich     | 32.4           | 6    | 87               | 17        | 25            |
| Newbury     | 23.4           | 9    | 80               | 26        | 21            |
| Newburyport | 8.8            | 4    | 34               | 4         | 31            |
| Rowley      | 18.6           | 6    | 76               | 9         |               |
| Salisbury   | 16.0           |      | 20               | 15        | 9             |

Table 1. List of coastal municipalities in the Great Marsh study region showing total land area falling within the study region and number of barriers of each barrier type expected to exist based on existing data sets and GIS analysis.

Table 2. List of inland municipalities in the Great Marsh study region showing total land area falling within the study region and number of barriers of each barrier type expected to exist based on existing data sets and GIS analysis. Numbers of road-stream crossings and dams located within the surveyed portions of each municipality. The area column represents the land area of the municipality that falls within the study region.

|               | Area           | Non-Tidal |      |
|---------------|----------------|-----------|------|
| Town          | (square miles) | Crossings | Dams |
| Andover       | 5.4            | 28        | 7    |
| Beverly       | 3.7            | 16        | 1    |
| Billerica     | 0.6            | 1         |      |
| Boxford       | 21.2           | 158       | 11   |
| Burlington    | 3.5            | 9         | 3    |
| Danvers       | 3.9            | 21        | 3    |
| Georgetown    | 12.9           | 90        | 1    |
| Groveland     | 3.4            | 10        |      |
| Hamilton      | 14.4           | 61        |      |
| Lynnfield     | 3.4            | 5         | 1    |
| Manchester    | 0.4            | 3         |      |
| Middleton     | 14.5           | 62        | 10   |
| North Andover | 16.6           | 83        | 7    |
| North Reading | 13.5           | 50        | 2    |
| Peabody       | 4.6            | 30        | 6    |
| Reading       | 4.8            | 9         |      |
| Tewksbury     | 0.5            |           |      |
| Topsfield     | 12.8           | 83        | 11   |
| Wenham        | 7.4            | 34        | 1    |
| West Newbury  | 3.6            | 11        |      |
| Wilmington    | 14.2           | 62        |      |
| Woburn        | 0.1            | 1         |      |

# **Project Description**

The *Great Marsh Barriers Assessment* (Barriers Assessment) was conducted by the Ipswich River Watershed Association (IRWA) as a component of a multifaceted project called *Coastal Resiliency Planning and Ecosystem Enhancement for Northeastern Massachusetts* (Resiliency Project). The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and the Parker-Ipswich-Essex Rivers Restoration Partnership (PIE-Rivers) region.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report, include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. This report and the combined results of the screening analyses are tools for local governments, private owners and restoration practitioners to identify sites warranting further investigation, especially where infrastructure and ecological risk overlap. This report identifies opportunities for projects to be initiated and implemented that achieve the dual benefits of improved community resilience and ecological integrity.

Municipal jurisdictions end at town boundaries, despite clear hydrologic and ecological links across those boundary lines. Since a primary focus of this project was to provide useful and easily accessible information for municipal partners, we have summarized the results and available information for each municipality in separate sections appended to this report. The town-specific summaries go into greater detail and are intended to give local officials, staff and residents maps, study results and other information specific to the town in which they are working as a supplement to this regional analysis. The summaries for individual towns can be found in the Appendix of this report.

This project also provides assistance to communities and infrastructure owners with efforts to remove or mitigate ecological and infrastructure risk at sites where it is feasible and cost effective. This project developed conceptual design plans for the replacement of 103 of the high priority road crossings in the region (101 non-tidal crossings plus two tidal sites in Salisbury) to improve storm resilience and ecological connectivity. These sites were chosen based on preliminary results from the screening analysis and conversations with staff at many of the region's municipalities. The conceptual design plans and supporting materials are available and appended to this report.

## Structure Types

Our analysis considers four basic categories of structures that intercept or redirect water; dams, non-tidal roadstream/river crossings, tidal crossings and coastal stabilization structures. These structures all have limited life spans and, depending on their design, location and maintenance history, their failure may present significant risk to people and other infrastructure. This risk is elevated during extreme storm and high tide events, which are becoming more common in northeastern Massachusetts.

These structures also often severely alter natural flow, flooding and sediment transport regimes of rivers and coastal areas that can result in significant negative impacts to the ecology and resilience of those systems. For example, the downstream transport of sediments and nutrients from the watershed provides important

nourishment to coastal food webs and helps salt marshes keep pace with erosion and sea level rise. Also, downstream transport of wood and other material helps build and re-shape river and stream habitat, providing important complexity and habitat niches to support a wide range of aquatic and semi-aquatic species.

The biological and ecological impacts of these changes to the river system can be profound. For example, searun migratory (diadromous) fishes such as river herring can have their entire life cycle interrupted. If aquatic barriers keep adult river herring from returning from the ocean to access their freshwater spawning grounds, the fish stocks are quickly depleted. River herring are an important forage fish in the estuary and ocean, providing food for species such as striped bass, cod and tuna. Thus, low river herring abundance can have a negative effect on these prized game and food fishes. The exclusion or reduction of river herring from the freshwater system also removes an important annual source of marine-derived food and nutrients, in the form of adult fish and their eggs, to the coastal rivers and ponds. This change greatly alters the food web and nutrient cycle, with impacts on everything from bugs to birds that live in or frequent these freshwater habitats.

The risk to roads and other infrastructure associated with barriers are also significant. This has been highlighted quite frequently over the last decade or so during large rain events such as Hurricane Sandy (2012), Hurricane Irene (2011) and the 2006 Mother's Day Storm which is the storm of record in the study area. Flooding events such as these test aging and undersized infrastructure with sometimes dangerous and often costly results as roads, railways and other infrastructure is damaged and destroyed as structure fail or underperform.

In light of aging infrastructure, increasing storm severity and shrinking budgets municipalities and other government entities have an increased need to prioritize the riskiest structures for upgrade and replacement. At the same time, in recent decades, ecological restoration practitioners have given greater attention to the impact some of these structures have on valuable ecosystems and ecosystem services. Restoration practitioners too have identified the need to prioritize the structures with the highest cost-benefit ratios for improvements. In many cases, there is considerable overlap between ecosystem impact and infrastructure risk, but rarely are these two concerns considered together. This study utilizes a variety of data sets and screening analyses to summarize and assess the relative effects of these structures on infrastructure and aquatic ecology in the region. This study integrates prioritization efforts for infrastructure and ecological concerns to identify sites where both can be addressed, benefitting communities by promoting more resilient infrastructure and ecosystems.

This comprehensive approach provides a novel, regional assessment of barriers in the Great Marsh and its contributing watersheds. This framework will allow municipal officials, restoration practitioners and others to identify and further pursue work at sites while considering their position and relative impact within the landscape and watershed.

#### Dams

Massachusetts has nearly 3,000 known dams, most of which have roots as power sources for small mills built in the 18<sup>th</sup> and 19<sup>th</sup> centuries. On average, there are more than 10 dams per 100 stream miles across New England and New York (Anderson & Olivero Sheldon 2011). There are currently 84 dams within the Great Marsh study region, the majority of which are relatively small structures that have long since outlived the purpose for which



they were built. As a result of their age, many of these dams are also in some level of disrepair, increasing the risk of an eventual structure failure.

Dams have a profound impact on river processes and ecology. They interrupt natural downstream sediment transport, alter nutrient cycles and temperature regimes, block fish and wildlife migration corridors and change free flowing (lotic) habitat to more pond-like (lentic) habitat altering the species the system can support. The combination of these and other factors associated with dams has resulted in a drastic change in species composition and abundance throughout the region. Removing a dam can quickly remove many of the negative effects and

begin to restore a river to a more natural state. For this reason, river restoration experts have become more and more focused on removing dams when they are no longer needed or when their costs outweighs their benefits.

In recent decades, more and more dam owners in Massachusetts and across the country are reevaluating the risk, cost and ecological impact of outdated dams. Forty-five dams have been removed in Massachusetts since 2000<sup>1</sup>, including two in the Great Marsh study region. In many cases they are choosing to remove rather than maintain dams they no longer need. In cases where dams are still actively used there are sometimes options to reduce risk and ecological impact during maintenance and renovation. With such a large number of dams it is important for both dam owners and restoration practitioners to have a way to prioritize structures for further consideration.

### Non-Tidal Road-Stream Crossings

"Road-stream crossing" is a general term that includes structures that carry roads or railways over streams or rivers. Most often these crossings are either culverts or bridges. When crossings are undersized, improperly installed (e.g. too high relative to the stream bed), or in disrepair, they can cause serious problems for the roadway, the waterway, or both. As the name implies, non-tidal crossings are those bridges and culverts that span waterways that are not influenced by ocean tides. Public works departments are often dealing with maintenance and replacement of these structures which are ubiquitous throughout the temperate northeast. In

<sup>&</sup>lt;sup>1</sup> Rivers, American (2017): American Rivers Dam Removal Database. figshare. <u>https://doi.org/10.6084/m9.figshare.5234068.v2</u>, Retrieved: 4:00 pm, 11/17/2017.

recent years, restoration practitioners have been giving increased attention to the impact of improper crossing design on river function and aquatic ecology.

The Massachusetts Stream Crossing Standards (Jackson et al. 2011) were developed to guide design of new and upgraded stream crossings that allow natural fluvial processes to take place through a crossing, thus allowing for better habitat connectivity. Crossings designed to meet these standards have also proven more resilient to high storm flows, reducing failure risk and increasing structure life.



#### **Tidal Crossings**

Tidal crossings are bridges and culverts located within the tidally influenced portion of streams and rivers as well as tidal creeks. The tidal water flowing through these structures may be saltwater, brackish or freshwater depending on its position in the watershed and streamflow rates, but all sites are subject to two-way water flow at regular tidal intervals. Undersized tidal crossings can impact aquatic and salt marsh systems in many ways,



including alteration of natural tidal inundation cycles, salinity gradients and species movement. In some cases, historic presence of an undersized tidal crossing can have long-term (potentially permanent) repercussions that negatively affect salt marsh health.

Tidal crossings are analogous to non-tidal crossings in many ways; however the twice daily fluctuation of water level, bi-directional flow, and exposure to coastal storm surges makes them a special case for both prioritization and design. Because of these rapid and extreme fluctuations in variables including velocity, water depth and salinity, it is very challenging to make judgments about both the ecological impact and the

flooding or failure risk based on site visits and rapid assessment. Due to these factors, acceptable rapid assessment methods have not yet been developed for this type of structure.

#### Coastal Stabilization Structures

Like the other three structure types, coastal stabilization structures can have deleterious effects on aquatic systems. While these structures differ from the first three in that they do not block or constrict the flow-through of water in the same way, they can and do have large impacts on energy and sediment transport regimes in the nearshore and estuarine environments of the Great Marsh. Hardened coastal structures<sup>2</sup> often increase the risk of storm impacts on adjacent sites, scour important shallow water and intertidal habitat, and alter natural tidal flooding cycles on salt marsh and beach ecosystems. The physics



governing these impacts are complex and highly site specific, but in general it can be assumed that the more armored a coastline is the more impacted the coastal ecosystem. In places where infrastructure needs to be protected, the proper design and maintenance of the structures is extremely important to ensure minimal impacts on ecosystem function and storm protection associated with natural dune, beach and marsh features.

### Methods

Below is a summary of the methods the Ipswich River Watershed Association (IRWA) team used to identify and prioritize potential barriers throughout the study region. The methods are organized by the four barrier types listed above. This study leverages a variety of existing data sets and prioritization efforts for the various structure types and attempts to integrate them into a more comprehensive, screening level assessment of these structures. We used unique methodologies to assess and prioritize each structure type because of the inherent differences among the structure types and the variation in available data and screening tools. Structures were prioritized across the region as well as within each individual municipality. The priority scores produced in this report, while often presented as numerical values, should not be considered a comprehensive quantitative assessment of importance. Important considerations including cost, ownership and historic value were not systematically evaluated. In addition, the screening analysis was not able to consider many site-specific factors including specific species presence, rare species habitat and existing utilities. These priority scores are intended to be used as a tool to identify sites that warrant further investigation and to provide a decision support tool to assist municipal managers and other structure owners.

In addition to the inventory and prioritization effort described above, this project developed conceptual plans for the replacement and upgrade of a subset of structures that we identified as high priority. We identified a subset of high priority road-stream crossings for potential design based on our initial prioritization effort, meetings with municipal representatives, and position relative to other structures. For example, some structures that had moderate priority scores were included for design if they either opened up a large portion of river to upstream access or were among a series of related high priority structures located along the same stretch of

<sup>&</sup>lt;sup>2</sup> Human-made structures consisting of material such as rock, concrete or steel that are designed to resist shoreline erosion and movement of coastal sand and sediment.

waterway. Similarly, some high-scoring structures were removed from consideration if their upgrade would not reconnect a large segment of habitat and were not on an important roadway.

#### Dams

We identified dam locations in the region using the Massachusetts Office of Dam Safety (ODS) Dams layer<sup>3</sup> as our base data set. The ODS Dams layer was checked against our local knowledge of dam locations and dam removals that had taken place since the last update of the database in February, 2012. Records of dam locations that we knew to be incorrect or redundant, or where dams had been removed, were withdrawn from the data set prior to our final analysis.

We then assessed dams in ESRI ArcGIS using a prioritization system that considered screening indices for both infrastructure risk (RI) and ecological impact (EI) to derive a numeric dam priority (DP) score for each dam in the region. The generalized process for deriving these DP scores is outlined in Figure 2. More detail on how the DP score and its various components were calculated is discussed below. Dams across the whole region were sorted and ranked according to their calculated DP scores to provide an initial priority list.

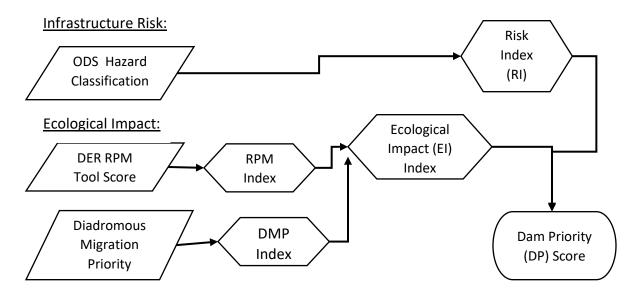



Figure 2. Generalized barrier prioritization scoring process for dams<sup>4</sup>. Explanations of model inputs and sub-components are more fully explained in the Infrastructure Risk, Ecological Impact and Dam Priority Score sections below.

A number of dams in the region are directly associated with reservoirs that provide drinking water to local communities through surface water withdrawals. While it is conceivable that a municipality or water provider may decide to decommission and remove one of these structures, we assumed it was quite unlikely in most cases due to the ongoing, important function these dams are providing. We conducted a second round of prioritization using the same process as above, but removing dams that are known to be associated with active municipal surface water reservoirs.

<sup>&</sup>lt;sup>3</sup> http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/dams.html

<sup>&</sup>lt;sup>4</sup> Explanation of abbreviations in Figure 2: ODS (Massachusetts Office of Dam Safety), DER RPM (Massachusetts Division of Ecological Restoration – Dam Restoration Potential Model)

The final step in prioritizing dams was consideration of any available local information on factors including community priority, safety concerns and restoration interest that we were able to obtain from conversations with residents, ecological experts or municipal officials. Dams with active or planned restoration projects, specific community concerns, or those that are known to be in poor condition were flagged and added to the priority list. While this step is inherently more subjective than calculating numerical priority scores, it can provide critically important information affecting restoration potential of a site.

#### Infrastructure Risk (RI)

The ODS assigns hazard codes to dams under its regulatory jurisdiction based on the severity of hazards presented to communities in the event of dam failure. Jurisdictional dam owners are responsible for periodic inspection of their dams on a schedule set by the hazard code. Hazard codes do not relate in any way to probability of failure since these codes are not tied to the maintenance condition of the dam.

For our analysis, we chose to use the hazard code for the dams as our screening metric for infrastructure risk. We considered all dams to be in similar condition and focused solely on the risk in the event of failure according to the ODS categorization. Each dam in the study region was assigned a risk index value based on its ODS hazard code as shown in Table 3.

| Office of Dam Safety<br>Hazard Class | Risk Index<br>Score |
|--------------------------------------|---------------------|
| Non-Jurisdictional                   | 0                   |
| Low Hazard                           | 0.5                 |
| Significant Hazard                   | 1                   |
| High Hazard                          | 2                   |

Table 3. Dam Infrastructure Risk Index (RI) scoring system.

#### Ecological Impact (EI)

To screen for the ecological impact of dams, we used the Massachusetts Division of Ecological Restoration's (DER) Restoration Potential Model (RPM) Tool<sup>5</sup> and priority restoration paths for anadromous fish identified by the Massachusetts Division of Marine Fisheries (DMF) (Reback et al. 2004) and the Ipswich River Watershed Association.

The RPM Tool displays information that can be used to evaluate the relative ecological benefit of removing a dam based on a scoring system that considers a variety of dam and watershed characteristics including indicators of watershed position, ecological integrity and aquatic habitat connectivity. It does not account for many other variables that must be considered when assessing the priority and potential impacts of dam removal.

While the RPM tool does give some priority to head of tide dams and structures that have fewer downstream barriers to the ocean, it does not specifically prioritize structures that are important migration paths for diadromous fish. Diadromous fish are important to ecosystem processes in coastal rivers and restoration of diadromous fish stocks (especially river herring) is a major regional priority. For these reasons, we chose to give extra weight to dams that block migration paths to critical spawning and rearing habitats. We began to identify high priority restoration paths using an analysis of anadromous fish passage conducted by DMF which discussed

<sup>&</sup>lt;sup>5</sup> Restoration Potential Model Tool and description available at: <u>https://www.mass.gov/service-details/ders-restoration-potential-model-tool-description</u>

anadromous fish restoration potential for all major streams in the study region and provided information on the presence/absence of fish passage structures at various dams (Reback et al. 2004). Ipswich River Watershed Association staff reviewed these paths and added additional priority routes leading to some historical alewife spawning ponds that we deemed to have restoration potential based on recent habitat surveys and conversations with DMF staff. The final network of priority migration corridors is shown in magenta in Figure 3. All dams located along these priority migration corridors were categorized as migration priorities and further split based on whether they have existing fish passage structures.

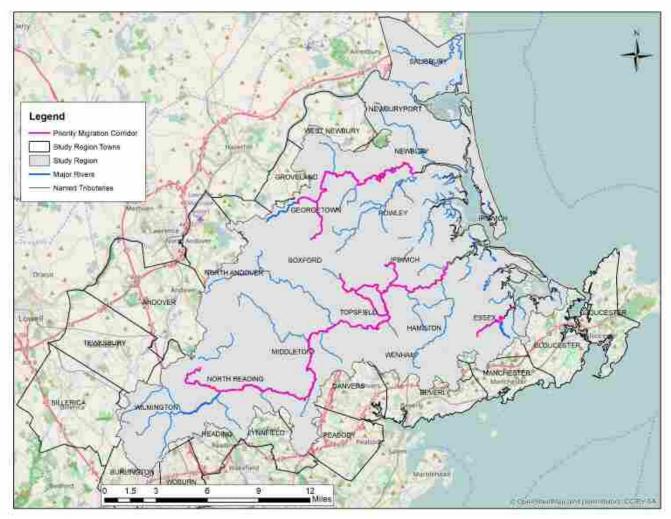



Figure 3. Map of Great Marsh Barriers Assessment study region showing priority migration corridors for anadromous fish.

We combined the information from the RPM tool score and the DMP categories into an Index of Ecological Impact (EI). The EI Index is a score ranging from 0 to 2 with lower scores indicating structures that are likely causing less negative ecological impact to their watersheds (i.e. are lower priority for removal or other restoration) and higher scores being structures that should be higher restoration priorities based on ecological criteria. It is important to note that this is just a screening tool that does not consider many factors that might increase or decrease a dam's impact on its watershed. Removal of dams with EI Index scores of 0 may still provide significant ecological benefits. The EI Index score is calculated as:

$$EI Index = (RPM Index + DMP Index)/2$$
(1)

where:

The RPM Index is derived from Table 4 and the DMP Index is derived from Table 5.

| Table 4. | RPM | Index | scoring | system |
|----------|-----|-------|---------|--------|
|----------|-----|-------|---------|--------|

| RPM Score Range | RPM Index Score |
|-----------------|-----------------|
| 0-20            | 0               |
| 21-35           | 1               |
| 36-65           | 2               |

Table 5. DMP Index scoring system

|                             | DMP Index |
|-----------------------------|-----------|
| DMP Category                | Score     |
| No Priority                 | 0         |
| Priority - Existing Passage | 1         |
| Priority - No Passage       | 2         |

#### Dam Priority Score (DP)

The DP Score, as outline in Figure 2, is the final numeric value we calculated to prioritize dams based on the infrastructure and ecological indices were used as inputs. The DP Score is calculated using the following equation:

$$DP = (EI + RI) + 0.01(RI - EI)$$
(2)

The DP score ranges from 0 to 4 with higher numbers representing dams that are higher priority for removal based on our screening methods. The DP score gives near equal weight to both the ecological (EI) and risk (RI) scores. In cases where the sum of the two scores is equal, it gives priority to dams that derive more of their score from the RI index score.

#### Non-Tidal Road-Stream Crossings

We identified expected stream crossing locations using GIS data downloaded from the North Atlantic Aquatic Connectivity Collaborative (NAACC) stream crossing database<sup>6</sup>. This data set includes stream crossings predicted by GIS desktop analysis (intersecting stream networks with road and rail networks across the state) and known locations verified by previous field studies. Because this data set is based on a state-wide desktop GIS analysis some crossings were not in their originally expected place and some did not exist at all. Additionally, some crossings were identified during field visits and added to the data set by our field crews. Our goal was to conduct a complete survey of the crossings in the watershed, knowing that a considerable number of sites would be

<sup>&</sup>lt;sup>6</sup> www.streamcontinuity.org/cdb2

inaccessible for a variety of reasons including private property and crew safety (e.g. Interstate highway, active railroad).

A large number of the crossings included in our analysis had been previously verified, surveyed and scored based on ecological criteria in an earlier study conducted by IRWA as part of the NAACC program (Kelder 2014). We conducted a secondary desktop analysis to remove incorrect, redundant, or removed structures and also added some structures that were not in the original data set. We also flagged and removed known tidal stream crossings from this analysis because the prioritization system described below is designed for non-tidal stream crossings only<sup>7</sup>.

As part of this study, we collected additional field measurements of elevation and geomorphology variables at road stream crossings using a protocol developed by Trout Unlimited (TU). This included an extensive field effort over the course of three years where teams conducted one or more site visits to more than 500 road-stream crossings, an effort that required well over 3,000 hours of staff and volunteer time. Using the information collected during this survey as well as information from the NAACC surveys noted above, TU conducted a screening-level analysis of each crossing's expected ability to pass peak flows generated by five storm scenarios (50%, 10%, 4%, 2% and 1% likelihood storms)<sup>8</sup>. The full results of the TU analysis are summarized in the appended report (Trout Unlimited 2017).

We prioritized field efforts using our best professional judgment regarding the relative importance of getting results for a crossing based upon factors including watershed position, proximity to known barriers and relationship to critical migration habitat. For example, a crossing located on private property immediately downstream from a water supply dam high in the watershed and without a fish ladder would likely not warrant further investigation if it was not easily accessible. On the other hand, a crossing on private property, but along a priority migration corridor would be flagged for follow up and we would make extra effort to gain access to conduct a survey at a later date. As a result of the logistical challenges of a study of this scope, the percentage of sites visited may appear low, but this effort represents a far more complete understanding of road-stream crossings than in almost any other watershed system in the Commonwealth.

We assessed non-tidal road-stream crossings using a prioritization system that considered screening indices for both infrastructure risk and ecological impact to derive a numeric Crossing Priority (CP) score for each crossing. The generalized process for deriving the CP scores is outlined in Figure 4. More detail on how the CP score and its components were calculated is outlined in the sections below. Crossings across the whole study region were mapped in ESRI ArcGIS and ranked according to their calculated CP scores to allow for visual assessment of their potential impact on watershed and municipal scales. We also produced maps showing the distribution of crossings based on their component infrastructure risk (CRI) and ecological impact (CEI) scores.

<sup>&</sup>lt;sup>7</sup> Field data was collected at a number of tidal crossings, but any results from the screening tools would be of questionable value since both the NAACC and Hydraulic Capacity tools do not consider two-way flow.

<sup>&</sup>lt;sup>8</sup> Storm likelihood is the calculated percent chance of at least one 24-hour rainfall event of that size or larger occurring on any given year. This concept is sometimes presented as a return interval where the return interval is the number of times, on average, this magnitude of rainfall is expected to happen over a fixed time period (e.g. 1% likelihood storm = 100 year return interval storm). -1% = 100 yr, 2% = 50 yr, 4% = 25 yr, 10% = 10 yr, and 50% = 2 yr.

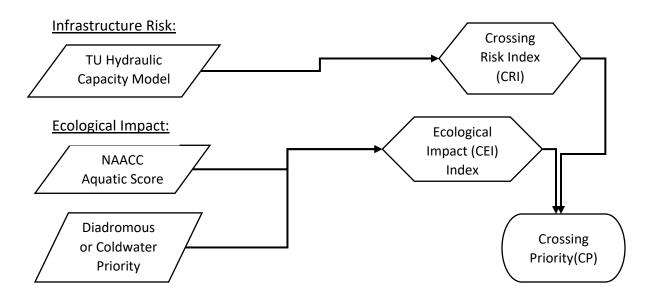



Figure 4. Generalized barrier prioritization scoring process for non-tidal road-stream crossings. Explanations of model inputs and sub-components are fully explained in the Infrastructure Risk, Ecological Impact and Crossing Priority Score sections below.

The CP score is an index value we calculated for prioritizing non-tidal road-stream crossings for upgrade based on our screening of infrastructure risk and ecological impact. The CP score ranges from 0 to 10 with larger numbers representing higher priority structures for replacement. It is important to point out that these priorities are based on our screening tools and don't consider all aspects of an eventual decision to prioritize a structure for replacement, including local priority, cost and other site-specific concerns.

Using preliminary results from the above analysis, we produced maps and tables showing high priority crossings for each municipality with ten or more scored crossings. We approached officials from each municipality to solicit their feedback on the results and inquire about any other sites that they deemed high priority (especially due to flooding or failure history). We used feedback from the municipalities to ground-truth our results and to adjust town-specific priority design lists as appropriate. Consistent with our approach to local knowledge regarding dams, sites prioritized based solely on local knowledge were included as priorities, but not explicitly ranked.

### Infrastructure Risk (CRI)

The TU Hydraulic Capacity (HC) screening model calculates expected flow at the 2-yr, 10-yr, 25-yr, 50-yr, and 100-yr return interval storms at each crossing site based on its upstream watershed characteristics and tests whether the structure has the capacity to accommodate the peak flow. The inability of crossings to pass storm flows can result in water ponding on the upstream side of the road embankment and increased velocities and erosive forces at the downstream outlet. In general, we expect the roadway in areas around these crossings to be more likely to flood and fail over time and chose to use the results of the HC model to generate our Crossing Infrastructure Risk Index (CRI).

For each return interval, the HC screening model generates a value of Pass (enough capacity), Fail (not enough capacity) or Transitional (near capacity 85% - 115% of capacity). We used these results to generate a numeric CRI value scaled from 0-5 with 0 passing at all and 5 at none of the return intervals tested using the following formula:

$$CRI = 1F + .6T$$

where:

F = the number of return intervals where the crossing fails

T = the number of return intervals where the crossing is transitional

#### Ecological Impact (CEI)

The NAACC program assesses non-tidal road-stream crossings based on their design with respect to ecological connectivity. Specifically the protocol measures a crossing's level of compliance with the MA Stream Crossing Standards which were developed to promote stream continuity, aquatic organism passage and wildlife passage at crossings (Jackson et al. 2011). Field collected data is submitted by trained individuals to the NAACC database which, among other things, calculates an NAACC Aquatic Score for each crossing. This Aquatic Score (AQ) is a value ranging from 0 to 1 with 0 representing no connectivity and 1 representing full connectivity at the crossing. We used this score as the primary component in our Crossing Ecological Impact Index (CEI).

As we did with dams, we wanted to incorporate some level of added importance to crossings located along high value stream reaches. In particular, we were interested in prioritizing crossings along priority migration paths for diadromous fishes and for coldwater stream habitat which is rare in the study region. For diadromous fish, we used the priority migration corridors described in the Dam Ecological Impact Index section above and shown in Figure 3. We then retrieved the MA DFW Coldwater Fisheries Resources<sup>9</sup> layer from MassGIS and attempted to add any coldwater habitat to our priority corridors. All of the mapped coldwater resources within the study region were already included in the stream reaches shown in Figure 3 so that was kept as the priority region. All crossings located along the priority migration corridors were categorized as migration priorities (MP) and assigned an MP value of 1. All other crossings were assigned a MP value of 0.

Using the above information, we calculated the CEI Index as described below.

If AQ is greater than 0.5:

$$CEI = 5 - 5AQ \tag{4}$$

If AQ is less than or equal to 0.5:

$$CEI = 5 - 5AQ + MP \tag{5}$$

where:

AQ = NAACC Aquatic Score

MP = migration priority value described above (0 or 1)

(3)

<sup>&</sup>lt;sup>9</sup> http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/dfwcfr.html

If CEI calculations returned a value of greater than 5 the score was rounded down to 5. The CEI score ranges from 0 to 5 with larger numbers indicating structures that are expected to have higher negative ecological impact based on this screening assessment and thus higher priority for improvement.

#### Crossing Priority Score (CP)

The CP score, as outlined in Figure 4, is the final numeric value we calculated for prioritizing non-tidal roadstream crossings for upgrade based on our screening of infrastructure risk and ecological impact. The CP score ranges from 0 to 10 with larger numbers representing higher priority structures for replacement. The score is obtained by summing the CRI and CEI scores as follows:

$$CP = CRI + CEI$$
(6)

In cases where only CRI or CEI scores were available, CP was equivalent to the available component score.

#### **Tidal Crossings**

Because of the highly variable and complex conditions at tidal crossings and tidally restricted areas, no one has yet developed assessment methodologies comparable to those for non-tidal crossings. These structures are subject to two-way water flow as well as the variable effects from both upstream (e.g. river flow, stormwater) and downstream (e.g. tidal inundation, storm surge) directions. For example, a large rainfall event would have different impact when occurring at low tide versus high tide. Similarly, the ecological effects of crossings that create tidal restrictions are harder to identify as tidal stage has a substantial impact on whether these structures are barriers to animal movement. Due to these complexities, the vulnerability and ecological impact of individual tidal crossings is difficult to quantify as part of a rapid assessment protocol. For these tidal structures, we relied on results from the Draft Great Marsh Coastal Wetlands Restoration Plan (see below) as well as locations and information regarding tidal crossings obtained through the NAACC surveys, desktop GIS analysis, review of aerial imagery, site visits and local knowledge.

The Massachusetts Office of Coastal Zone Management's Wetlands Restoration Program (WRP), (now part of the MA Division of Ecological Restoration), together with numerous partners, completed the Draft Great Marsh Coastal Wetlands Restoration Plan (Draft GMP)<sup>10</sup> as a tool to help communities in the Great Marsh region identify and restore degraded and former coastal wetland habitats. The Draft GMP was initially developed in 2006 and is currently (2017) being updated and revised. It presents maps and descriptions of 121 potential and completed salt marsh restoration sites in the Great Marsh. The Draft GMP also included more detailed "rapid technical assessments" of a subset of the sites it considered. These reports include more detail on the degree of tidal restriction, including information such as measurements of tidal range over month-long periods, that may be of use if these sites are further explored.

Our analysis focused on tidal road crossings as well as some off-road structures (such as berms and water control structures) that may be acting as barriers to natural tidal exchange. We built our data set of tidal crossings by conducting a detailed review of the 121 records in the Draft GMP as well as 23 surveys from our NAACC field work that identified tidal conditions. Using these two data sets in conjunction with desktop GIS analysis of aerial photos and local knowledge, we identified a total of 89 tidal crossings within the study region.

<sup>&</sup>lt;sup>10</sup> Developed by Massachusetts Office of Coastal Zone Management's Wetlands Restoration Program (WRP), (now part of the MA Division of Ecological Restoration) - 2006

These sites are all located within the seven coastal municipalities in the study (Essex, Gloucester, Ipswich, Newbury, Newburyport, Rowley and Salisbury).

We characterized each tidal crossing as to whether it was under a public way and whether it was associated with a marsh that was classified as tidally restricted in the Draft GMP. The Draft GMP prioritized tidally restricted marshes from low to high priority based on a subjective (best professional judgment) assessment of ecological restoration potential and feasibility at the site. Our analysis defined priority tidal crossings by combining the above criteria as shown in Table 6. Structures identified as high priority or problem areas for flooding by municipal staff or in the Great Marsh Regional Coastal Adaptation Plan were considered to be high priority tidal crossings if not already included through the above screening approach.

| On Public | Restoration Priority in 2006 Draft | Tidal Crossing |  |
|-----------|------------------------------------|----------------|--|
| Way       | Great Marsh Plan (Draft GMP)       | Priority       |  |
|           | Not in Draft GMP                   | Low            |  |
| No        | Low                                | LOW            |  |
| NO        | Med                                | Med            |  |
|           | High                               | High           |  |
|           | Not in Draft GMP                   | Low            |  |
| Yes       | Low                                | Med            |  |
|           | Med                                | Llich          |  |
|           | High                               | High           |  |

Table 6. Prioritization categories for tidal crossings in the Great Marsh Barriers Assessment.

#### Coastal Stabilization Structures

To identify priority coastal stabilization structures, we relied on data from the Massachusetts Coastal Structure Inventory and Assessment Project<sup>11</sup> which inventoried both public and private shoreline stabilization structures throughout the Commonwealth. For this analysis, we considered hard, human-made structures including seawalls, revetments, bulkheads, groins, jetties, breakwaters, and dikes or levees. The available information on these structures allowed us to identify location, structure type, length of shoreline impacted and, in some cases physical condition of the structures. We were unable to assess ecological impacts of individual shoreline stabilization structures with the available data and screening tools.

#### Publicly Owned Structures

Publicly owned shoreline stabilization structures were inventoried and assessed in a report prepared for Massachusetts Departments of Coastal Zone Management (CZM) and Conservation and Recreation (DCR) from 2006 to 2009 (Bourne Consulting Engineering 2009). The data and reports include condition ratings and estimated repair or reconstruction costs for publicly-owned coastal structures. These structures were characterized through on-site evaluation that focused primarily on shoreline stabilization structures and their ability to resist major coastal storms and prevent damage due to flooding and erosion.

<sup>&</sup>lt;sup>11</sup> Massachusetts Coastal Structure Inventory and Assessment Project available at: <u>http://www.mass.gov/eea/agencies/czm/program-areas/stormsmart-coasts/seawall-inventory/</u>

The inventory rated structures based on a condition scoring system that ranged from excellent (A) to critical (F). For our analysis we used the condition structures from this assessment as a proxy for infrastructure risk under the assumption that structures in poorer condition are more likely to fail during storms. These publicly owned structures were separated into priority categories based on the condition scores as follows: low priority (A, B), moderate priority (C), high priority (D, F). This prioritization assumed that poor condition makes structures more vulnerable to failure during storms, increasing the risk of damage to both property and ecosystem services.

#### Privately Owned Structures

Privately owned coastal stabilization structures were inventoried and summarized in a 2013 report prepared for the Massachusetts Office of Coastal Zone Management (CZM) by Applied Science Associates, Inc. (Fontenault et al. 2013). This 2013 effort identified location and type of coastal structures, such as seawalls and revetments, not included in previous phases of the Massachusetts Coastal Infrastructure Inventory and Assessment Project. These structures were identified using remote sensing techniques and are presumed to be privately owned. The data and report provide a comprehensive assessment of shoreline armoring coast-wide.

This inventory of privately owned coastal stabilization structures does not include an assessment of structure condition. For our analysis, we included information on number of structures, location and length of altered shoreline, but did not assess risk or prioritize the structures.

#### Crossing Replacement Designs

As the final component of this project, Meridian Associates, Inc. (MAI) was contracted to develop conceptual designs for the replacement of a subset of selected high priority crossings with structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures. This task was focused almost exclusively on non-tidal crossings, but tidal crossings could be designed where site-specific conditions allowed the engineering team to do so.

The designs were developed using available site data including measurements, photos and field notes collected by IRWA as well as results from the NAACC database<sup>12</sup> and the Trout Unlimited Hydraulic Conductivity screening tool. Modeling effort field measurements collected by IRWA for the NAACC and screening tools. The proposed designs focused on improving hydraulic capacity and ecological connectivity and were intended to conform to the Massachusetts Stream Crossing Standards where applicable (Jackson et al. 2011). The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. These designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

<sup>&</sup>lt;sup>12</sup> NAACC Crossing database available at: <u>www.streamcontinuity.org/cdb2</u>

# Results

A total of 1,026 barrier structures were assessed as part of this analysis. The following sections provide a broad summary of prioritization results for each barrier type for the whole study region. Those interested in results, discussion and complete data sets specific to individual municipalities should refer to the town specific packages in the appendices of this report.

### Dams

There are 91 dam records in the Office of Dam Safety (ODS) Database that fall within the limits of the study region and were considered as part of our analysis. After review, we identified 84 records that represent existing dams and retained those for prioritization and analysis. The design purpose and active use of these dams is varied, however a considerable number (14) are currently used to impound water for municipal surface water supply reservoirs. No dams in the region produce hydroelectric power or are designed to provide flood control.

The geography, geology and hydrology of the Great Marsh region are generally not compatible with the construction of large dams. As a result, the study region is dominated by relatively small dams with small impoundments. Of the 81 dams in the region, 35 are not under the jurisdiction of the Office of Dam Safety (non-jurisdictional)<sup>13</sup> because of relatively low risk of downstream damage based largely on height and impoundment size. While small dams generally present lower risk to life and property in the event of failure, non-jurisdictional dam owners are not required by ODS to conduct regular safety inspections of their structures. Due to the age of many of these structures as well as the absence of inspection requirements, many of these small structures are in considerable disrepair increasing the likelihood of eventual failure.

The results of our regional prioritization of dams based on DP score are summarized below in Table 7 (without water supply dams) and Table 8 (with water supply dams). Water supply dams occupy the top 4 priority spots and 8 of the top 12 (Table 8). This appears to largely be a function of the tendency for these to be larger structures and thus higher hazard. Many of the high-ranking water supply dams also represent parts of impoundments that are formed by multiple dams, so are somewhat redundant to consider separately. For example, three of the top four structures are components of the dam system that forms the Putnamville Reservoir.

When water supply dams are removed from the priority ranking, the list of high priority dams is dominated by structures that are old mill dams and, for the most part, no longer serve the purpose they were designed for. Some of these structures have active projects underway to remove or improve conditions at them and others have been identified as possible restoration sites pending owner interest and funding availability (Table 7). The locations of the 11 highest priority dams identified in this analysis are highlighted in Figure 6. Water supply dams that had high DP scores, but were removed from the final analysis, are also highlighted on the map.

A look at the infrastructure risk and ecological impact components of our screening approach can also provide some insight as to what is driving the DP score. The 46 dams that are regulated by the ODS are primarily classified as low risk (22) or significant risk (17) structures with only 6 dams classified as high risk. All 6 of the high risk dams are part of surface water supply reservoir systems. A map of the study region showing dams by ODS hazard class can be seen in Figure 7. Figure 5 shows a graphical representation of dams summarized by

<sup>&</sup>lt;sup>13</sup> The MA Office of Dam Safety (ODS) data set included 34 non-jurisdictional dams. One dam (MA00181) was changed from significant hazard to non-jurisdictional for our analysis based on information from the City of Beverly indicating that it was mis-identified in the ODS database.

Restoration Potential Model (RPM) score and diadromous migration priority, the two sets of data that are used to determine the Ecological Impact Index (EI). There are 5 dams with RPM scores of >40 that are also along priority migration corridors. The region-wide results of the EI Index analsis are shown in Figure 8. The higher priority dams are concentrated lower down in the watersheds and along the mainstems of the major rivers, largely as a function of location relative to diadromous migration corridors.

Table 7. Top ranked dams in Great Marsh study region. List includes top 11 dams based on Dam Priority (DP) score and additional dams with active restoration projects or specific local priority. List excludes water supply dams. \*Adjusted Priority Rank is the ranking with water supply dams excluded.

| Adjusted<br>Priority<br>Rank* | Dam ID  | Dam Name                             | Town       | Risk<br>Index<br>(RI) | Eco<br>Index<br>(El) | Dam<br>Priority<br>(DP) | Active<br>Project<br>or Local<br>Priority |
|-------------------------------|---------|--------------------------------------|------------|-----------------------|----------------------|-------------------------|-------------------------------------------|
| 1                             | MA01137 | Ipswich River Dam (South Middleton)  | Middleton  | 1                     | 1.5                  | 2.5                     | Active                                    |
| 2                             | MA00159 | Howe Pond Dam                        | Boxford    | 1                     | 1                    | 2.0                     |                                           |
| 2                             | MA00261 | Pentucket Pond Outlet Dam            | Georgetown | 1                     | 1                    | 2.0                     |                                           |
| 2                             | MA01604 | Jewel Mill Dam                       | Rowley     | 1                     | 1                    | 2.0                     |                                           |
| 5                             | MA01198 | Baldpate Pond Dam                    | Boxford    | 0.5                   | 1.5                  | 2.0                     |                                           |
| 5                             | MA00231 | Ipswich Mills Dam                    | lpswich    | 0.5                   | 1.5                  | 2.0                     | Active                                    |
| 5                             | MA00241 | Parker River Dam #1 (Central Street) | Newbury    | 0.5                   | 1.5                  | 2.0                     |                                           |
| 8                             | MA01610 | Howletts Brook Dam                   | Topsfield  | 0                     | 2                    | 2.0                     |                                           |
| 9                             | MA00158 | Stiles Pond Outlet Dam               | Boxford    | 1                     | 0.5                  | 1.5                     |                                           |
| 9                             | MA03006 | Mill Pond Dam                        | Middleton  | 1                     | 0.5                  | 1.5                     |                                           |
| 9                             | MA01613 | Bethune Pond Dam                     | Topsfield  | 1                     | 0.5                  | 1.5                     |                                           |
|                               |         | I                                    |            | 1                     | 1                    | 1                       |                                           |
| 20                            | MA00276 | Willowdale Dam                       | lpswich    | 1.5                   | 1.5                  | 1.5                     | Active                                    |
| 45                            | MA00240 | Parker River Dam #2 (Larkin Road)    | Newbury    | 0                     | 0.5                  | 0.5                     | Priority                                  |

Table 8. Top 16 dams in Great Marsh study region ranked by Dam Priority (DP) score.

| Priority |         |                                      |            | Water  |
|----------|---------|--------------------------------------|------------|--------|
| Rank     | Dam ID  | Dam Name                             | Town       | Supply |
| 1        | MA00745 | Putnamville Reservoir Dam            | Danvers    | Yes    |
| 2        | MA00744 | Putnamville Reservoir West Dike      | Danvers    | Yes    |
| 2        | MA00726 | Winona Pond Dam                      | Peabody    | Yes    |
| 2        | MA01297 | Putnamville Reservoir East Dike      | Danvers    | Yes    |
| 5        | MA01137 | Ipswich River Dam (South Middleton)  | Middleton  |        |
| 6        | MA01121 | Mill Pond Dam                        | Burlington | Yes    |
| 6        | MA01123 | Mill Pond South Dike                 | Burlington | Yes    |
| 8        | MA00182 | Longham Reservoir Dam                | Wenham     | Yes    |
| 8        | MA00165 | Dow Brook Reservoir Dam              | lpswich    | Yes    |
| 8        | MA00159 | Howe Pond Dam                        | Boxford    |        |
| 8        | MA00261 | Pentucket Pond Outlet Dam            | Georgetown |        |
| 8        | MA01604 | Jewel Mill Dam                       | Rowley     |        |
| 13       | MA01198 | Baldpate Pond Dam                    | Boxford    |        |
| 13       | MA00231 | lpswich Mills Dam                    | lpswich    |        |
| 13       | MA00241 | Parker River Dam #1 (Central Street) | Newbury    |        |
| 16       | MA01610 | Howletts Brook Dam                   | Topsfield  |        |

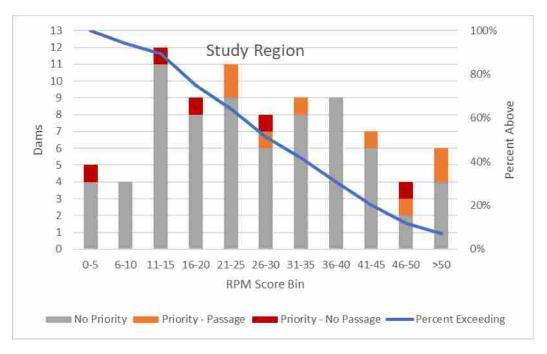



Figure 5. Summary of Dams in the Great Marsh study region summarized by RPM score and diadromous migration priority. The blue line shows the percentage of dams in the region that meet or exceed the RPM score.

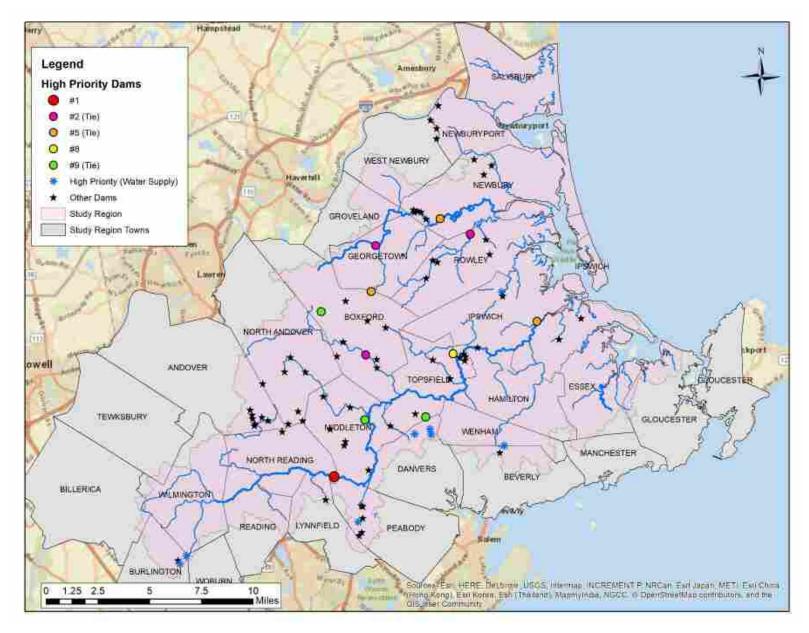



Figure 6. Map of Great Marsh study region showing highest priority dams based on DP Score analysis. Water supply dams were removed from the final ranking.

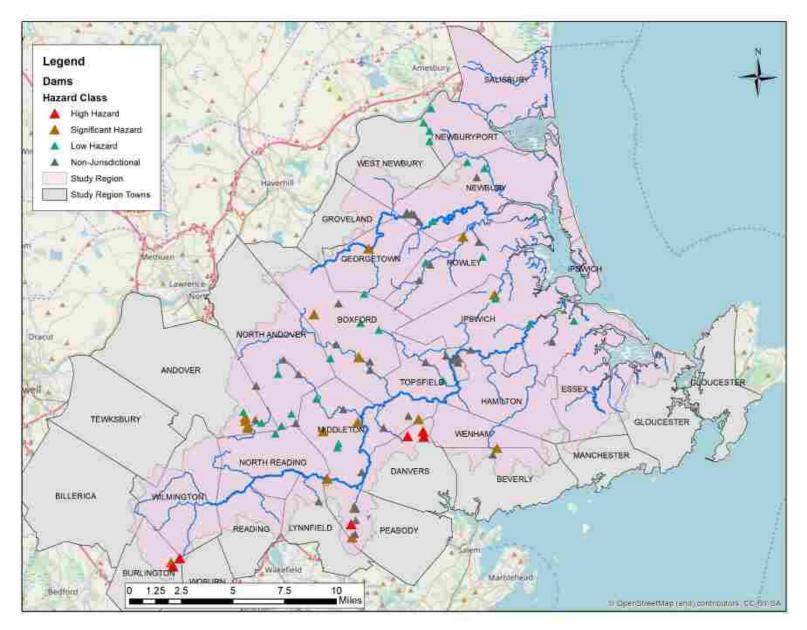



Figure 7. Map of the Great Marsh study region showing dams classified by MA Office of Dam Safety hazard class.

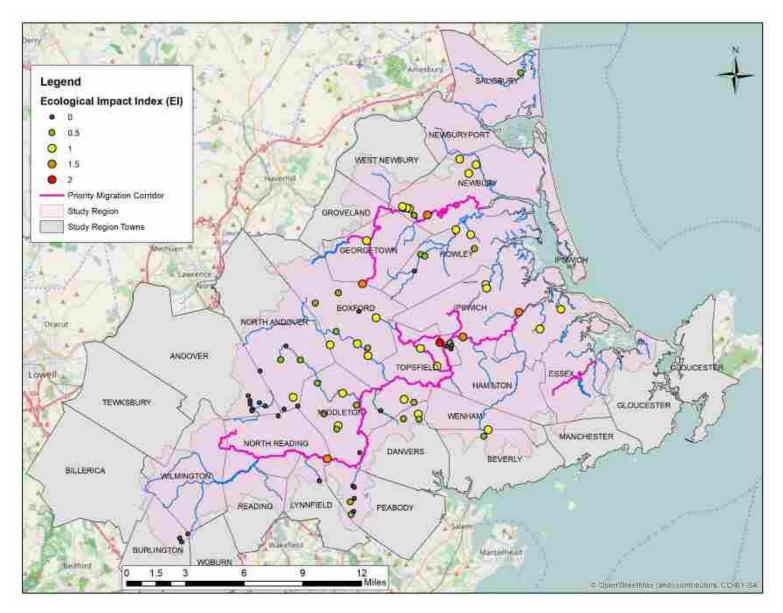



Figure 8. Map of Great Marsh study region showing dams prioritized by Ecological Impact Index scores.

### Non-Tidal Road Stream Crossings

The North Atlantic Aquatic Connectivity Collaborative (NAACC) database predicted a total of 1,176 road-stream crossings within the 280 square mile study region. Over the course of this project, a total of 704 (60%) of the predicted structures were inventoried by IRWA-trained survey teams. Within the higher priority portions of the region, percent coverage was higher with 76% (292) of the crossings along rivers/major tributaries and 79% (92) of the crossings along priority migration corridors inventoried. These numbers are an underrepresentation of the number of sites that crews visited since a considerable number of sites were deemed inaccessible by crews in the field. Ninety three of the 704 inventoried sites either had no crossing or the crossing had been removed prior to the survey; this left 611 sites where we were able to collect survey data to run screening analyses. We assigned Crossing Priority (CP) index scores and ranked each of these 611 crossings<sup>14</sup>.

The CP scores calculated ranged from 0 to 9.94 on the 10-point scale. Most of the crossings scored in the lower part of the range with a median CP score for all scored crossings of 2. A histogram displays two separate peaks in score frequency with high numbers of crossings scoring either around 1 or around 6.5 (Figure 9). These distinct frequency peaks of CP scores helps distinguish between groups of structures with relatively low combined priority and those that are more problematic from both infrastructure and ecological perspectives.

The 35 highest priority structures had CP scores greater than 7 (Table 9). Thirty-two of these structures were single culvert crossings and the remaining three were multiple culvert crossings, highlighting that bridges tend to be more effective at passing both flood waters and aquatic organisms. Figure 10 shows a map of crossings throughout the study region by CP score. We did not detect a strong distribution pattern for high CP scores; however it appears that the density of higher priority crossings is lower in the upper portions of the Ipswich, Parker, Essex and Miles River watersheds than in much of the rest of the Great Marsh study region.

Maps showing results for the infrastructure (CRI) and ecological (CEI) components of the CP score are included below in Figure 11 and Figure 12. Sites with the highest infrastructure risk are predicted to fail to pass flows associated with the 2-year return interval storm. Structures in this high risk CRI category appear to be slightly more highly concentrated in portions of the study region east of North Andover and Middleton and less common in the headwaters of the Ipswich River (Figure 11). Structures with higher ecological impact (CEI) scores appear to be somewhat more concentrated on small, low order tributaries where it is more likely that crossings structures are small culverts (Figure 12).

<sup>&</sup>lt;sup>14</sup> Crossing Priority (CP) scores for 488 sites were calculated using both infrastructure risk (CRI) and ecological impact (CEI) values. For 123 crossings, we lacked usable results for the infrastructure risk (CRI) screening tool, mainly because the more detailed survey data need to run that model could not be collected for those sites. Sites lacking CRI scores were assigned CP scores and ranked using results from CEI scores only.

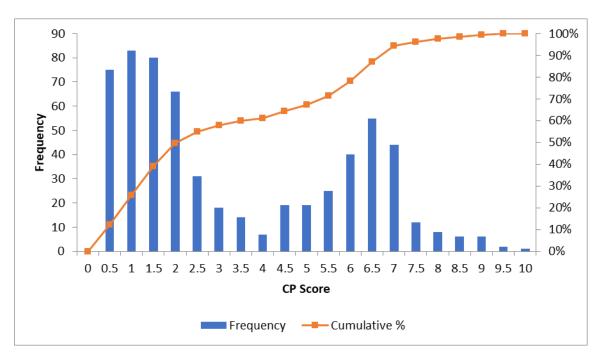



Figure 9. Frequency histogram showing Crossing Priority (CP) scores for non-tidal road-stream crossings in the Great Marsh study region.

| Regional |             |                                       |                      |                  |           |           |          |
|----------|-------------|---------------------------------------|----------------------|------------------|-----------|-----------|----------|
| CP Rank  | Crossing ID | Town                                  | Road                 | Structure Type   | CRI Score | CEI Score | CP Score |
| 1        | 188         | Wenham                                | Dodges Row           | Single Culvert   | 5.0       | 4.9       | 9.9      |
| 2        | 9011        | Topsfield                             | Meetinghouse Lane    | Single Culvert   | 5.0       | 4.3       | 9.3      |
| 3        | 472         | North Andover                         | Liberty Street       | Single Culvert   | 4.6       | 4.4       | 9.0      |
| 4        | 670         | Topsfield                             | Pond Street          | Single Culvert   | 5.0       | 3.9       | 8.9      |
| 5        | 1054        | Newbury                               | Coleman Road         | Single Culvert   | 5.0       | 3.9       | 8.9      |
| 6        | 151         | Wilmington                            | Ainsworth Road       | Single Culvert   | 5.0       | 3.7       | 8.7      |
| 7        | 879         | Boxford                               | Washington Street    | Single Culvert   | 5.0       | 3.7       | 8.7      |
| 8        | 421         | Andover                               | Gray Road            | Single Culvert   | 4.0       | 4.6       | 8.6      |
| 9        | 408         | Andover                               | Salem Street         | Single Culvert   | 4.0       | 4.6       | 8.6      |
| 10       | 862         | Georgetown                            | Nelson Street        | Single Culvert   | 5.0       | 3.5       | 8.5      |
| 10       | 435         | Topsfield                             | River Rd             | Single Culvert   | 4.6       | 3.7       | 8.3      |
| 12       | 84          | North Reading                         | Concord Street       | Single Culvert   | 5.0       | 3.3       | 8.3      |
|          | -           | , , , , , , , , , , , , , , , , , , , |                      |                  |           |           |          |
| 13       | 859         | Boxford                               | Main Street          | Multiple Culvert | 5.0       | 3.3       | 8.3      |
| 14       | 990         | Rowley                                | Main Street          | Single Culvert   | 3.6       | 4.7       | 8.3      |
| 15       | 517         | Hamilton                              | Winthrop Sreet       | Single Culvert   | 3.6       | 4.4       | 8.0      |
| 16       | 753         | lpswich                               | Pine Swamp Road      | Single Culvert   | 5.0       | 2.9       | 7.9      |
| 17       | 681         | Boxford                               | Main Street          | Single Culvert   | 3.0       | 4.8       | 7.8      |
| 18       | 755         | Boxford                               | Kelsey Road          | Single Culvert   | 5.0       | 2.7       | 7.7      |
| 19       | 439         | Essex                                 | Story Street         | Single Culvert   | 4.0       | 3.7       | 7.7      |
| 20       | 413         | Hamilton                              | Moulton Street       | Single Culvert   | 5.0       | 2.7       | 7.7      |
| 21       | 1162        | Newbury                               | Off Middle Road      | Single Culvert   | 4.6       | 3.0       | 7.6      |
| 22       | 1094        | Newbury                               | Orchard Street       | Single Culvert   | 2.6       | 5.0       | 7.6      |
| 23       | 765         | Boxford                               | Off Styles Pond Road | Single Culvert   | 2.6       | 5.0       | 7.6      |
| 24       | 898         | Rowley                                | Daniels Road         | Single Culvert   | 5.0       | 2.5       | 7.5      |
| 25       | 860         | Georgetown                            | Central Street       | Single Culvert   | 5.0       | 2.5       | 7.5      |
| 26       | 639         | lpswich                               | Essex Road           | Single Culvert   | 5.0       | 2.4       | 7.4      |
| 27       | 587         | North Andover                         | Carlton Lane         | Single Culvert   | 3.6       | 3.6       | 7.2      |
| 28       | 462         | Topsfield                             | Summer Street        | Single Culvert   | 5.0       | 2.1       | 7.1      |
| 29       | 878         | Rowley                                | Haverhill Street     | Single Culvert   | 5.0       | 2.1       | 7.1      |
| 30       | 1231        | Newburyport                           | Pheasant Run Drive   | Multiple Culvert | 5.0       | 2.1       | 7.1      |
| 31       | 788         | Rowley                                | Boxford Road         | Single Culvert   | 5.0       | 2.1       | 7.1      |
| 32       | 9017        | Newbury                               | Off Middle Road      | Single Culvert   | 5.0       | 2.0       | 7.0      |
| 33       | 1155        | West Newbury                          | Georgetown Road      | Multiple Culvert | 5.0       | 2.0       | 7.0      |
| 34       | 292         | Hamilton                              | Alan Road            | Single Culvert   | 5.0       | 2.0       | 7.0      |
| 35       | 484         | Boxford                               | Middleton Road       | Single Culvert   | 4.0       | 3.0       | 7.0      |

Table 9. Non-tidal road-stream crossings with Crossing Priority (CP) scores of greater than 7 in the Great Marsh Barriers Assessment. This represents the 35 highest priority structures in the region based on screening model results.

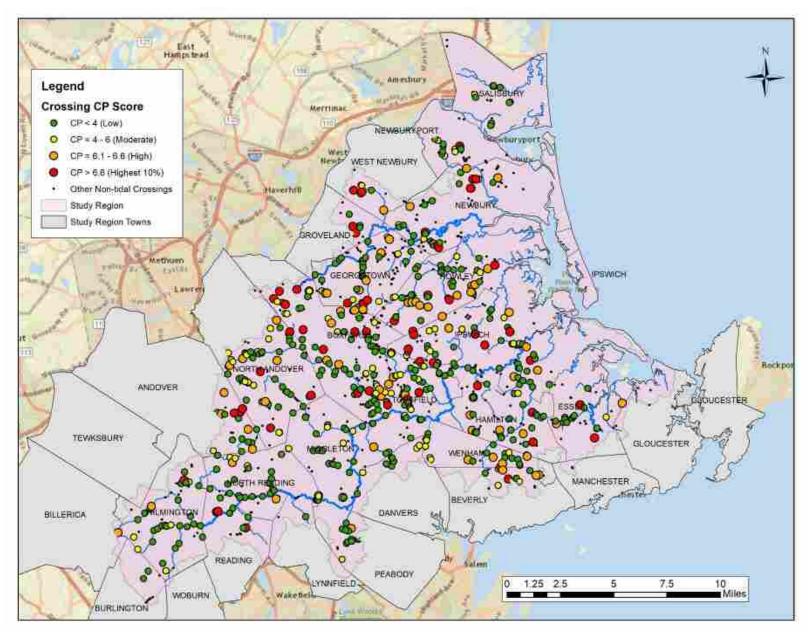



Figure 10. Map of the Great Marsh study region showing non-tidal road-stream crossings prioritized by Crossing Priority (CP) score.

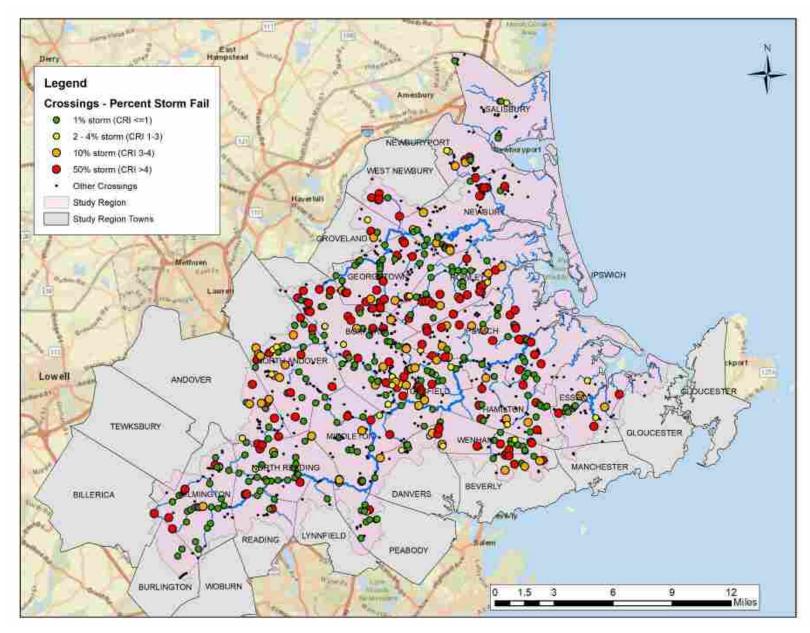



Figure 11. Map of the Great Marsh study region showing non-tidal road-stream prioritized by Crossing Infrastructure Risk Index (CRI) and the percent storm at which it is expected to fail to adequately pass flows.

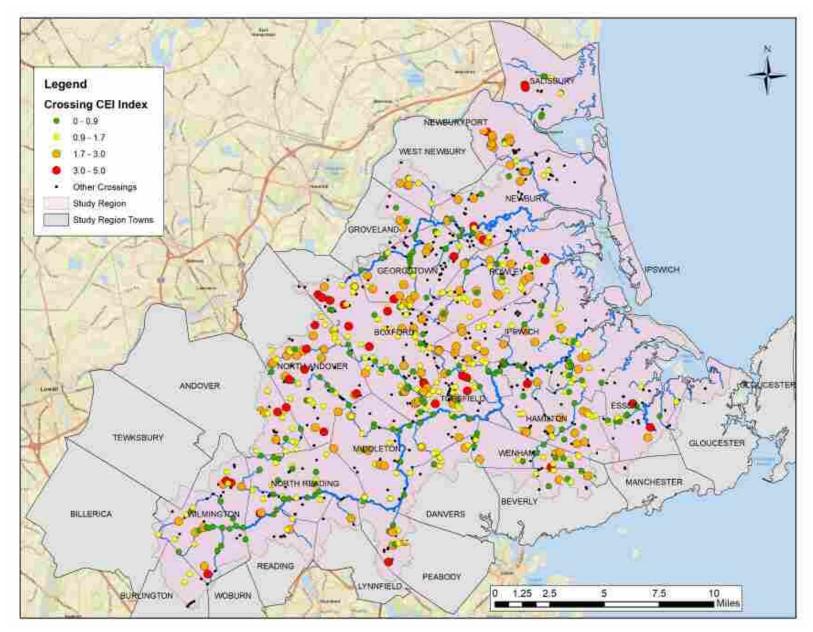



Figure 12. Map of the Great Marsh study region showing non-tidal road-stream crossings prioritized by Crossing Ecological Impact Index (CEI).

### Tidal Crossings

Based on a detailed review of 23 tidal crossings encountered during our field surveys and 121 site records in the Draft Great Marsh Plan, we identified a total of 86 tidal crossings in the study region. Sixty-nine (80%) of those 86 crossings were located under a public way and more than half (44) were associated with a tidally restricted salt marsh identified in the Draft GMP. As noted in the methods section, prioritizing tidal crossings with rapid screening techniques is a challenge. A group of partners led by UMass Amherst is currently developing and testing a rapid assessment technique for ecological connectivity at tidal crossings which we tested in our study region in the summer of 2017. Once the protocol is finalized and available for use, these sites can be assessed using the new protocol which will be adopted as a formal module in the NAACC assessment framework.

Based on our tidal crossing screening criteria 37% (32) are high, 12% (10) medium and 51% (44) low priority for further investigation. The spatial distribution of the prioritized tidal crossings is mapped in Figure 13. Salisbury has the most (12) high priority tidal crossings in the study region followed by Newbury (9) and Ipswich (7) as shown in Table 10. The cities of Gloucester and Newburyport don't have any high priority tidal crossings that were part of this study.

|           | Crossing |                                             |            | GMP Priority | Local    |
|-----------|----------|---------------------------------------------|------------|--------------|----------|
| Town      | ID       | Road/Site                                   | Public Way | Marsh        | Priority |
|           | 17107    | Route 133                                   | Yes        | Medium       |          |
|           | 17108    | Old Essex Road                              | Yes        | Medium       |          |
| Essex     | 17109    | Behind Town Hall                            | No         | High         |          |
|           | 436      | Eastern Ave                                 | Yes        | Low          | Yes      |
|           | 406      | Landing Road                                | Yes        | NIP          | Yes      |
|           | 660      | Argilla Road (Labor in Vain Creek)          | Yes        | Medium       |          |
|           | 6864     | Labor in Vain Road (Labor in Vain<br>Creek) | Yes        | Medium       |          |
| lpswich   | 17240    | MBTA Marsh West of Rowley River<br>(N)      | Yes        | Medium       |          |
| ipswich   | 17241    | MBTA Marsh West of Rowley River             |            |              |          |
|           | 1/241    | (S)                                         | Yes        | Medium       |          |
|           | 17242    | Town Farm Road North                        | Yes        | Medium       |          |
|           | 17243    | Town Farm Road South                        | Yes        | Medium       |          |
|           | 17246    | Trustees East side of Castle Hill           | No         | High         |          |
|           | 17329    | Route 1A - 500 ft N of Rowley Line          | Yes        | High         |          |
|           | 17330    | Route 1A - Rowley Town Line                 | Yes        | High         |          |
|           | 17343    | Newman Road East of Little River            | Yes        | High         |          |
|           | 17331    | River Front                                 | Yes        | Medium       |          |
| Newbury   | 17344    | Kents Island Road                           | No         | Medium       | Yes      |
|           | 1192     | Hanover Street                              | Yes        | Low          | Yes      |
|           | 17334    | Boston Road                                 | Yes        | Low          | Yes      |
|           | 1196     | Newburyport Turnpike (Little River)         | Yes        | NIP          | Yes      |
|           | 17336    | MBTA - Little River S of Boston Road        | Yes        | NIP          | Yes      |
| Rowley    | 17462    | Red Gate Road                               | Yes        | Medium       |          |
|           | 10104    | Ferry Road                                  | Yes        | High         |          |
|           | 10107    | Route 1 (Town Creek)                        | Yes        | High         |          |
|           | 10108    | State Reservation Road                      | Yes        | Medium       |          |
|           | 10117    | State Reservation Road                      | Yes        | Medium       |          |
|           | 10118    | State Reservation Road                      | Yes        | Medium       |          |
| Salishum  | 17471    | Rail Trail                                  | No         | High         |          |
| Salisbury | 17472    | Rail Trail                                  | No         | High         |          |
|           | 17473    | Route 1                                     | Yes        | High         |          |
|           | 17474    | Old County Road                             | Yes        | Medium       |          |
|           | 17475    | Old County Road                             | Yes        | Medium       |          |
|           | 17477    | March Road                                  | Yes        | High         |          |
|           | 17478    | 1st Street                                  | Yes        | High         |          |

Table 10. High priority tidal crossings in the Great Marsh study region.

-

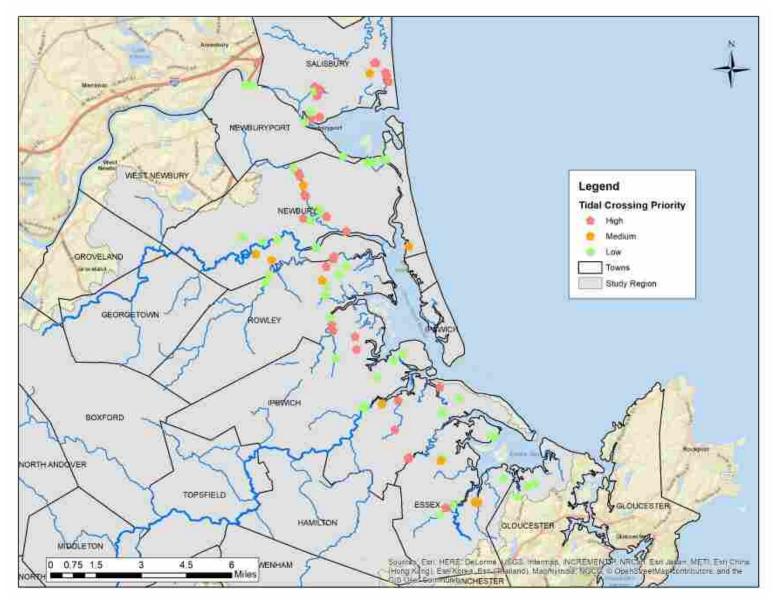



Figure 13. Map of the Great Marsh study region showing prioritized tidal crossings.

### Coastal Stabilization Structures

We evaluated a total of 87 coastal stabilization structures as part of this study using the existing data sets from MA Office of Coastal Zone Management (CZM) on public and private shoreline stabilization structures. Within the study region there are 27 public structures and 60 private structures covering almost 6,000 linear meters (3.7 miles) of shoreline (Table 11). Since the CZM inventory of private stabilization structures was conducted by remote sensing methods, the condition of the private structures was not available.

Of the 27 public structures, 1 was identified as high priority and 9 were moderate priority with the remaining 17 (63%) in good condition and therefore low priority (Table 11). Ninety five percent (57) of the private shoreline stabilization structures are located in the municipalities of Ipswich, Newbury and Newburyport. Newburyport (17 structures) and Salisbury (7 structures) together have more than half (63%) of the public structures. Across the region, the vast majority of stabilization structures are located around the mouths of the Merrimack and Ipswich rivers (Figure 14). The areas associated with Salisbury Beach, the Parker River National Wildlife Refuge, Crane Beach and Essex Bay show few signs of hardened shorelines within these data sets.

| Γ | Structure |                    |       | Length   |
|---|-----------|--------------------|-------|----------|
|   | Category  | Structure Priority | Count | (meters) |
|   |           | High               | 1     | 32       |
|   | Public    | Moderate           | 9     | 458      |
|   |           | Low                | 17    | 2223     |
|   | Private   | NA                 | 60    | 3259     |
|   | Т         | otal               | 87    | 5972     |

Table 11. Summary of coastal stabilization structures in the Great Marsh study region. Structure totals include structure count and cumulative length.

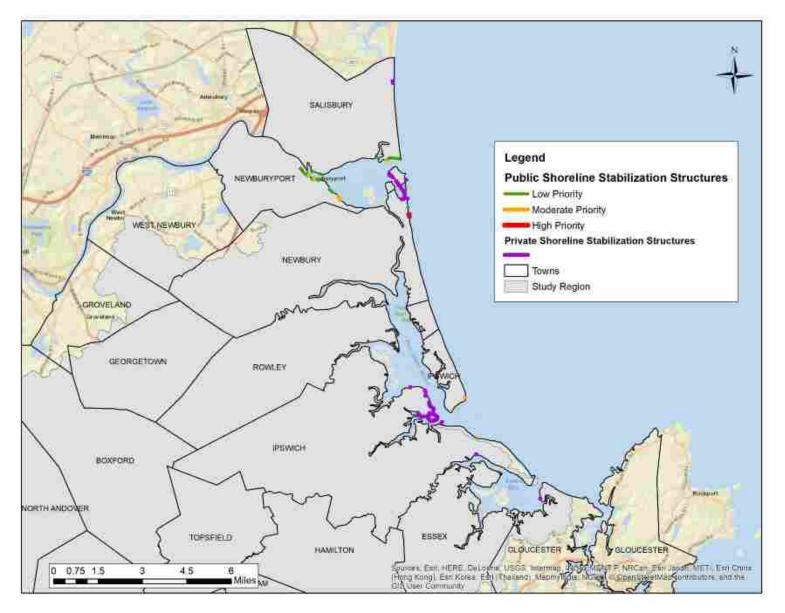



Figure 14. Map of the Great Marsh study region showing prioritized coastal stabilization structures.

### Crossing Replacement Designs

Meridian Associates, Inc. (MAI) developed conceptual designs for 103 high priority crossings in the region. The structures designed were almost exclusively non-tidal crossings (101), but two sites were tidal crossings for which the engineering team felt comfortable proposing conceptual designs. These designs can provide a starting point for municipalities and other crossing owners to more easily incorporate more resilient and long-lived structures into their bridge and culvert maintenance schedules. We hope the plans are useful tools to help with scoping, budgeting and fundraising associated with crossing upgrades. A summary of the number of crossings designed by municipality is shown below (Table 12). Figure 15 shows the distribution of designed crossings throughout the Great Marsh study region. Please refer to Appendix 3 for the full package of designs and recommendations prepared by MAI and IRWA.

|               | Number of Crossings |
|---------------|---------------------|
| Municipality  | Designed            |
| Andover       | 5                   |
| Boxford       | 15                  |
| Essex         | 3                   |
| Georgetown    | 4                   |
| Hamilton      | 3                   |
| lpswich       | 4                   |
| Middleton     | 3                   |
| Newbury       | 12                  |
| Newburyport   | 2                   |
| North Andover | 10                  |
| Reading       | 1                   |
| Rowley        | 6                   |
| Salisbury     | 5                   |
| Topsfield     | 14                  |
| Wenham        | 3                   |
| West Newbury  | 2                   |
| Wilmington    | 11                  |
| Total         | 103                 |

Table 12. Summary of conceptual designs for crossing replacement by municipality.

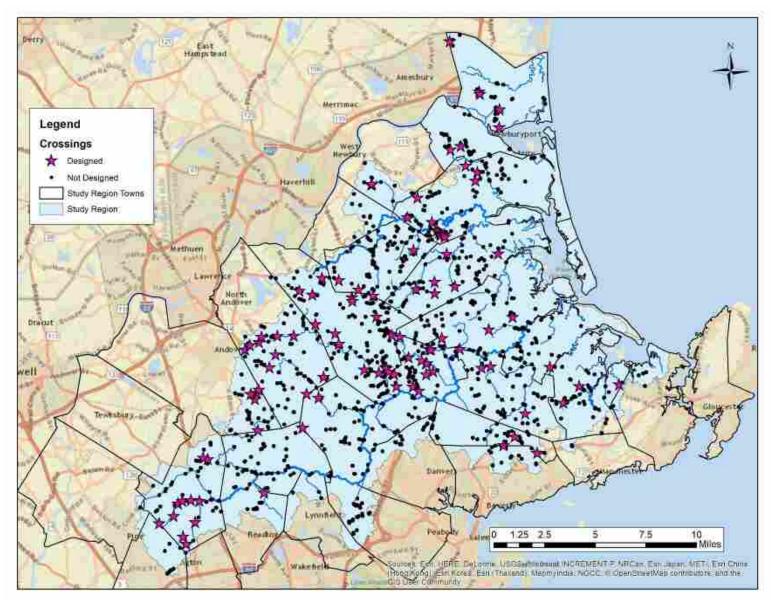



Figure 15. Map of the Great Marsh study region showing crossing sites for which conceptual designs were developed as part of the project.

### References

- Anderson, M.G. & Olivero Sheldon, A., 2011. Conservation Status of Fish, Wildlife, and Natural Habitats in the Northeastern Landscape: Implementation of the Northeast Monitoring Framework, Available at: http://rcngrants.org/sites/default/files/final\_reports/Conservation-Status-of-Fish-Wildlife-and-Natural-Habitats.pdf.
- Armstrong, W.H., Collins, M.J. & Snyder, N.P., 2011. Increased Frequency of Low-Magnitude Floods in New England. *Journal Of The American Water Resources Association*, 1930, pp.1–15.
- Bourne Consulting Engineering, 2009. *Massachusetts Coastal Infrastructure Inventory and Assessment Project: North Coastal*, Franklin, MA.
- Fontenault, J., Vinhateiro, N. & Knee, K., 2013. *Mapping and Analysis of Privately-Owned Coastal Structures* along the Massachusetts Shoreline,
- Jackson, S. et al., 2011. *Massachusetts River and Stream Crossing Standards*, Available at: www.streamcontinuity.org.
- Kelder, B., 2014. PIE-Rivers Stream Continuity Survey Final Report, Available at: http://www.pie-rivers.org/wpcontent/uploads/2015/03/PIE\_CrossingsFinalReport\_12312014.pdf.
- Reback, K.E. et al., 2004. TR-18: A survey of anadromous fish passage in coastal Massachusetts: Part 4. Boston and North Coastal., Available at: http://www.mass.gov/eea/agencies/dfg/dmf/publications/technical.html.
- Trout Unlimited, 2017. Parker-Ipswich-Essex Watersheds Stream Crossing Vulnerability Assessment Project: Final Report, Available at: http://pie-rivers.org/documents/TUPIEBarriers-2017.pdf.

# Appendix 1 – Coastal Municipality Summary Reports

This appendix contains town-specific summary reports for the coastal municipalities in the Great Marsh study region. These seven municipalities contain areas within the tidally influenced portion of the study region and therefore may have all four barrier types considered in our analysis. The municipalities are listed in Table 1 and the summary reports follow in alphabetical order. No report was produced for the City of Gloucester because only a very small portion of the city and few barriers fell within the study region.

Table 1. Alphabetical list of coastal towns in the Great Marsh study region showing the total number of each barrier type assessed within the surveyed portions of each municipality. The area column represents the land area of the municipality that falls within the study region. \**No report was produced for the City of Gloucester because only a very small portion of the city and few barriers fell within the study region.* 

|             |                |      |                  |           | Shoreline     |            |
|-------------|----------------|------|------------------|-----------|---------------|------------|
|             | Area           |      | Non-Tidal Stream | Tidal     | Stabilization | Structures |
| Town        | (square miles) | Dams | Crossings        | Crossings | Structures    | Designed   |
| Essex       | 13.0           |      | 38               | 12        |               | 3          |
| *Gloucester | 2.9            |      | 3                | 3         | 1             |            |
| lpswich     | 32.4           | 6    | 87               | 17        | 25            | 4          |
| Newbury     | 23.4           | 9    | 80               | 26        | 21            | 12         |
| Newburyport | 8.8            | 4    | 34               | 4         | 31            | 2          |
| Rowley      | 18.6           | 6    | 76               | 9         |               | 6          |
| Salisbury   | 16.0           |      | 20               | 15        | 9             | 5          |

## Table of Contents (Appendix 1)

| Essex       |    |
|-------------|----|
| Ipswich     |    |
| Newbury     |    |
| Newburyport |    |
| Rowley      | 77 |
| Salisbury   |    |

#### Essex

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of Essex. This project was conducted by the Ipswich River Watershed Association (IRWA) as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and the PIE-Rivers Region<sup>1</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied



Figure 1. Outlet of non-tidal crossing at Andrews Street in Essex (Site #308).

screening tools and local knowledge. Here we provide detailed results from the prioritization of the four barrier types. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>2</sup>.

The majority of Essex is located in the study region, covering an area of approximately 13.0 square miles. Essex is one of seven municipalities with land within the coastal portion of the Great Marsh study region and two of the four structure types are present (Figure 3). Our analysis considered a total of 29 structures including 17 non-tidal crossings (Table 2) and 12 tidal crossings (Table 3). This study did not identify any dams or coastal stabilization structures in the Town of Essex.

We were able to inventory and prioritize a total of 17 of the 38 known non-tidal crossings in the Town of Essex<sup>3</sup>. Our screening tools suggest that a number of these structures warrant a closer look for possible upgrade. Poor scores in the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (Ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. The two highest priority based on combined ecological and infrastructure risk were also among the top 50 sites region-wide (Table 2). The four crossings that scored the poorest are single culverts that could likely be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance. Any crossing with infrastructure

<sup>&</sup>lt;sup>1</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>2</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

<sup>&</sup>lt;sup>3</sup> The overall percentage of the total non-tidal crossings prioritized is relatively low due to a combination of factors. Most of the sites not surveyed were high in the watershed on very small tributaries. Additionally some sites were skipped due to site-specific access and safety issues. Regardless, this regional effort represents a far more complete understanding of road-stream crossings than in almost any other watershed system in the Commonwealth.

risk index (CRI) scores above 4 is showing possible inability to pass flow from storms that have a 50% chance of

occurring on any given year. While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms.

Our screening evaluation identified five high priority tidal crossings (Table 3). High priority tidal crossings were identified based on the combination of their association with a public road (public way), whether they were listed as priority sites in the Draft Great Marsh Coastal Wetlands Restoration Plan<sup>4</sup> and whether they had been identified as a priority by municipal other partners. Our methodology for assessing tidal crossing structures was less quantitative than the ones we used to assess non-tidal crossings, but given increasing sea level and storm intensities any structure already subject to tidal exchange is at risk. The tidal crossing on Landing Road (Site #406) was identified as a high priority crossing by the Town of Essex based on its location and history of storm-related flooding. This crossing provides the only point of access for the Essex Transfer Station and other Department of Public Works assets that would be needed during a large storm event. We would suggest that the structures that we have identified as high priority are worth a closer, more rigorous analysis where and when possible.



Figure 2. Outlet of tidal road-stream crossing at Eastern Avenue in Essex (Site #436).

As part of this study, Meridian Associates, Inc. (MAI) developed sketch conceptual sketch designs for the replacement of 3 non-tidal crossings with structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures<sup>5</sup>. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. These designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

Meridian design materials are located in Appendix 3

- Supporting materials begin on page 180
- Essex Designs begin on page 213

<sup>&</sup>lt;sup>4</sup> Developed by Massachusetts Office of Coastal Zone Management's Wetlands Restoration Program (WRP), (now part of the MA Division of Ecological Restoration) - 2006

<sup>&</sup>lt;sup>5</sup> A design was prepared for a crossing on Harry Homans Drive (Site #361) that was not flagged as a high priority by the screening tools. The site was identified as a high priority in the preliminary results used to choose crossings and was later significantly downgraded in priority during a quality control review of the model results. While this structure does not appear to be a high priority for replacement, we have included the designs which would provide some improvement for both wildlife passage and flood conveyance.

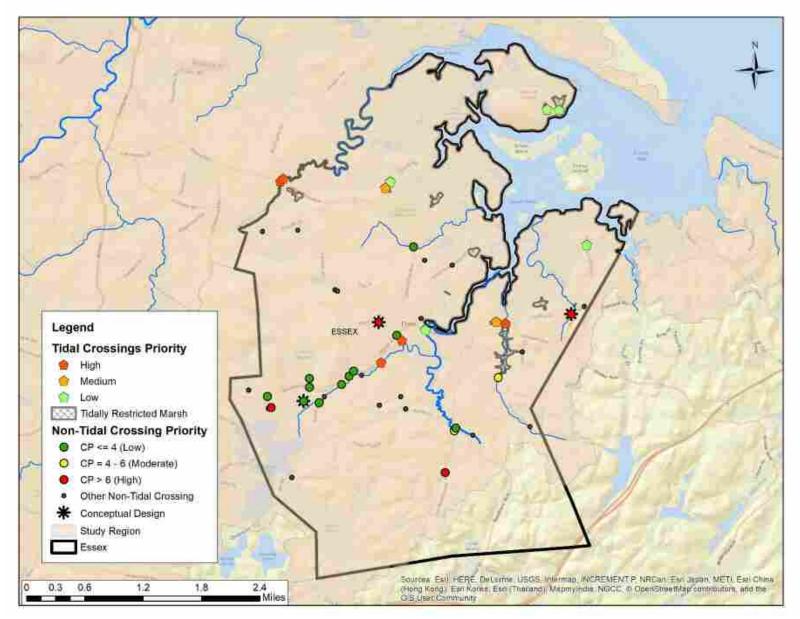



Figure 3. Map showing locations and prioritization scores for non-tidal and tidal crossings for the portion of the Great Marsh Study region within the Town of Essex, MA. Locations of crossings with available conceptual designs as well as suspected tidally restricted marshes are also noted.

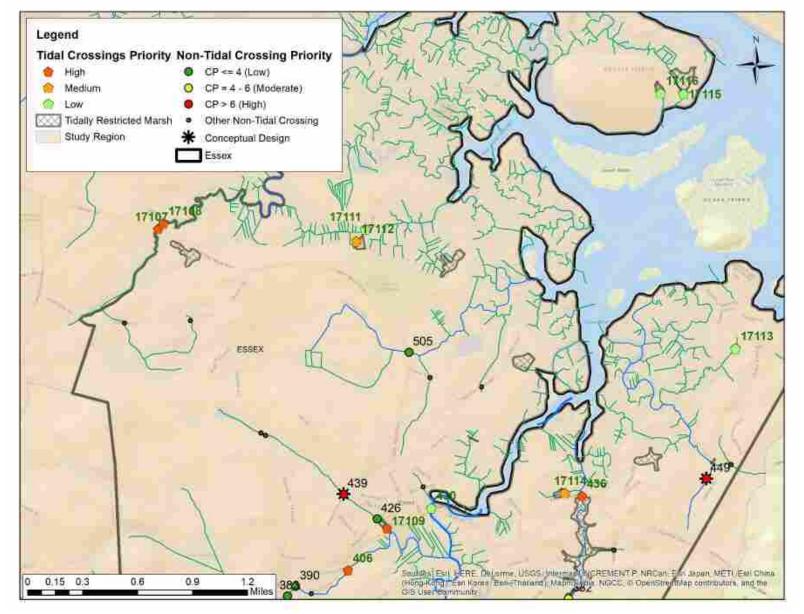



Figure 4. Prioritized non-tidal and tidal crossings in the Great Marsh Study region within the northern portion of the Town of Essex, MA. Non-tidal crossing ID shown in black and tidal crossing ID shown in green.

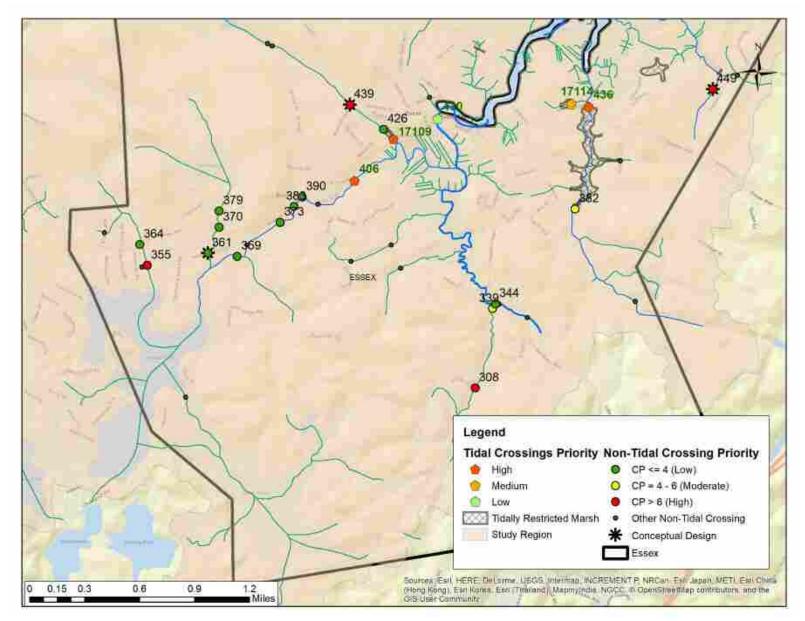



Figure 5. Prioritized non-tidal and tidal crossings in the Great Marsh Study region within the southern portion of the Town of Essex, MA. Non-tidal crossing ID shown in black and tidal crossing ID shown in green.

|          | Priori | ty Rank |                    |                | Prio           | rity Scoring |          |         |
|----------|--------|---------|--------------------|----------------|----------------|--------------|----------|---------|
|          |        |         |                    |                |                | Ecological   | Crossing |         |
| Crossing |        |         |                    |                | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road               | Structure Type | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 439      | 1      | 19      | Story Street       | Single Culvert | 4.0            | 3.7          | 7.7      | Yes     |
| 308      | 2      | 48      | Andrews Street     | Single Culvert | 5.0            | 1.8          | 6.8      |         |
| 449      | 3      | 71      | Lufkin Road        | Single Culvert | 5.0            | 1.6          | 6.6      | Yes     |
| 355      | 4      | 75      | Icehouse Lane      | Single Culvert | 5.0            | 1.6          | 6.6      |         |
| 382      | 5      | 214     | Grove Street       | Bridge         | 4.0            | 0.7          | 4.7      |         |
| 339      | 6      | 229     | Apple Street       | Single Culvert | 2.6            | 1.7          | 4.3      |         |
| 505      | 7      | 239     | John Wise Avenue   | Bridge         | 2.6            | 1.3          | 3.9      |         |
| 344      | 8      | 240     | Southern Avenue    | Single Culvert | NA             | 3.9          | 3.9      |         |
| 426      | 9      | 249     | Martin Street      | Single Culvert | 2.6            | 0.8          | 3.4      |         |
| 370      | 10     | 340     | Western Ave        | Single Culvert | 0.0            | 1.7          | 1.7      |         |
| 379      | 11     | 382     | County Rd          | Single Culvert | 0.0            | 1.4          | 1.4      |         |
| 373      | 12     | 424     | Essex Park Road    | Single Culvert | 0.0            | 1.2          | 1.2      |         |
|          |        |         |                    | Open Bottom    |                |              |          |         |
| 361      | 13     | 514     | Harry Homans Drive | Arch           | 0.0            | 0.6          | 0.6      | Yes     |
|          |        |         |                    | Open Bottom    |                |              |          |         |
| 364      | 14     | 530     | Western ave        | Arch           | NA             | 0.5          | 0.5      |         |
| 359      | 15     | 559     | Pond Street        | Bridge         | 0.0            | 0.3          | 0.3      |         |
|          |        |         |                    | Open Bottom    |                |              |          |         |
| 390      | 16     | 583     | Apple Street       | Arch           | 0.0            | 0.2          | 0.2      |         |
| 383      | 17     | 596     | Off Park Road      | Bridge         | 0.0            | 0.1          | 0.1      |         |

Table 2. Non-tidal crossings in the portion of the Great Marsh study region within the Town of Essex, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted.

Table 3. Prioritized tidal crossings in the portion of the Great Marsh study region within the Town of Essex, MA. Sites with available conceptual designs and/or associated rapid technical assessments (RTA) from the Draft Great Marsh Coastal Wetlands Restoration Plan are noted.

|          |                                        |            |                     |          | Tidal    |           |
|----------|----------------------------------------|------------|---------------------|----------|----------|-----------|
| Crossing |                                        |            | <b>GMP</b> Priority | Local    | Crossing | Design or |
| ID       | Road/Site                              | Public Way | Marsh               | Priority | Priority | RTA       |
| 17107    | Route 133                              | Yes        | Medium              |          | High     |           |
| 17108    | Old Essex Road                         | Yes        | Medium              |          | High     |           |
| 17109    | Behind Town Hall                       | No         | High                |          | High     |           |
| 436      | Eastern Ave                            | Yes        | Low                 | Yes      | High     | RTA       |
| 406      | Landing Road                           | Yes        | NIP                 | Yes      | High     |           |
| 17112    | Island Road                            | Yes        | Low                 |          | Medium   | RTA       |
| 17114    | North of Eastern Ave                   | Yes        | Low                 |          | Medium   | RTA       |
| 430      | Main Street                            | Yes        | NIP                 |          | Low      |           |
| 17111    | Island Road                            | Yes        | NIP                 |          | Low      |           |
| 17113    | Conomo Point Road                      | Yes        | NIP                 |          | Low      |           |
|          | East side of Choate Island - marsh     |            |                     |          |          |           |
| 17115    | behind Long Island                     | No         | Low                 |          | Low      |           |
|          | East side of Choate Island - southwest |            |                     |          |          |           |
| 17116    | of white cottage                       | No         | Low                 |          | Low      |           |

### Ipswich

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of Ipswich. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>6</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. Here we provide detailed results from the prioritization of the four barrier types. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>7</sup>. The entire town of Ipswich is located in the study region, covering an area



Figure 6. Ipswich Mills Dam (MA00231)

of approximately 32.4 square miles. Ipswich is one of seven municipalities with land within the coastal portion of the Great Marsh study region and all four structure types are present (Figure 8). Our analysis considered a total of 103 structures including 5 dams (Table 4), 56 non-tidal crossings (Table 5), 17 tidal crossings (Table 6), and 25 coastal stabilization structures (Table 7).

The Ipswich Mills Dam is the highest priority dam in Ipswich and is the 5<sup>th</sup> ranked dam across the study region as a whole (Table 4). The Ipswich Mills Dam is owned by the Town and has been a high priority of river restoration advocates for a number of years. A dam removal feasibility study is underway as of 2017, but no decision has been made to remove the structure. The active project at the Willowdale Dam is a planned fishway replacement being led by the private dam owner (Foote Brothers Canoe & Kayak Rentals) and the MA Division of Marine Fisheries.

We were able to inventory and prioritize a total of 56 non-tidal crossings in the Town of Ipswich. While none of these seem to stand alone as highest priority for immediately investigating replacement and upgrade, our screening tools suggest that a number of them warrant a closer look. Poor scores in the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. The six highest priority based on combined ecological and infrastructure risk were also among the top 50 sites region-wide (Table 5). Most of the poorly scored crossings are single

<sup>&</sup>lt;sup>6</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>7</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

culverts that could likely be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance. Any crossing with an infrastructure risk index (CRI) score above 4 is showing possible inability to pass flow from storms that have a 50% chance of occurring on any given year. While this does not indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms.



Figure 7. Outlet of tidal crossing at Argilla Road and Labor in Vain Creek (Site #660).

Our evaluation identified seven high priority tidal crossings (Table 6). High priority tidal crossings were identified based on the combination of their association with a public road (public way), whether they were listed as priority sites in the Draft Great Marsh Coastal Wetlands Restoration Plan<sup>8</sup> and whether they had been identified as a priority by municipal other partners. Our methodology for assessing tidal crossing structures was less quantitative than the ones we used to assess non-tidal crossings, but given increasing sea level and storm intensities any structure already subject to tidal exchange is at risk. We would suggest that the structures that we have identified as high priority are worth a closer, more rigorous analysis where and when possible.

There are 25 coastal stabilization structures identified in the Town of Ipswich all but one of which are private structures (Table

7). The only public structure is located on Plum Island and is flagged as a moderate priority in our screening based on its condition score. There is a total of more than two kilometers of hardened shoreline in Ipswich with by far the heaviest concentration being on the shores of Little Neck and Great Neck (Figure 8).

As part of this study, Meridian Associates, Inc. (MAI) developed sketch conceptual sketch designs for the replacement of 4 high priority non-tidal crossings with structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures<sup>9</sup>. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. These designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

Meridian design materials are located in Appendix 3

- Supporting materials begin on page 180
- Ipswich designs begin on page 226

<sup>&</sup>lt;sup>8</sup> Developed by Massachusetts Office of Coastal Zone Management's Wetlands Restoration Program (WRP), (now part of the MA Division of Ecological Restoration) - 2006

<sup>&</sup>lt;sup>9</sup> The Gravelly Brook crossing of Topsfield Road (Site #616) was selected for design based on its ecological priority and maintenance condition. The crossing designed on Chebacco Road (Site #6610) was selected based on flooding issues flagged by the Ipswich Department of Public Works.

Table 4. Dams in the portion of the Great Marsh study region within the Town of Ipswich, MA prioritized by Dam Priority Score (DP).

|         | Priority Rank |        |                          | Priority Scoring |             |            | Active/  |
|---------|---------------|--------|--------------------------|------------------|-------------|------------|----------|
|         |               |        |                          | Infrastructure   | Ecological  | Priority   | Priority |
| Dam ID  | Town          | Region | Dam Name                 | Risk (RI)        | Impact (EI) | Score (DP) | Project  |
| MA00231 | 1             | 5      | lpswich Mills Dam        | 0.5              | 1.5         | 2          | Active   |
| MA01207 | 2             | 12     | Rantoul Pond Dam         | 0.5              | 1           | 1.5        |          |
| MA00276 | 3             | 20     | Willowdale Dam           | 0                | 1.5         | 1.5        | Active   |
| MA02989 | 4             | 30     | Argilla Farm Pond Dam    | 0                | 1           | 1          |          |
| MA00165 | NA            | NA     | Dow Brook Reservoir Dam  | 1                | 1           | 2          |          |
| MA00230 | NA            | NA     | Bull Brook Reservoir Dam | 0.5              | 1           | 1.5        |          |

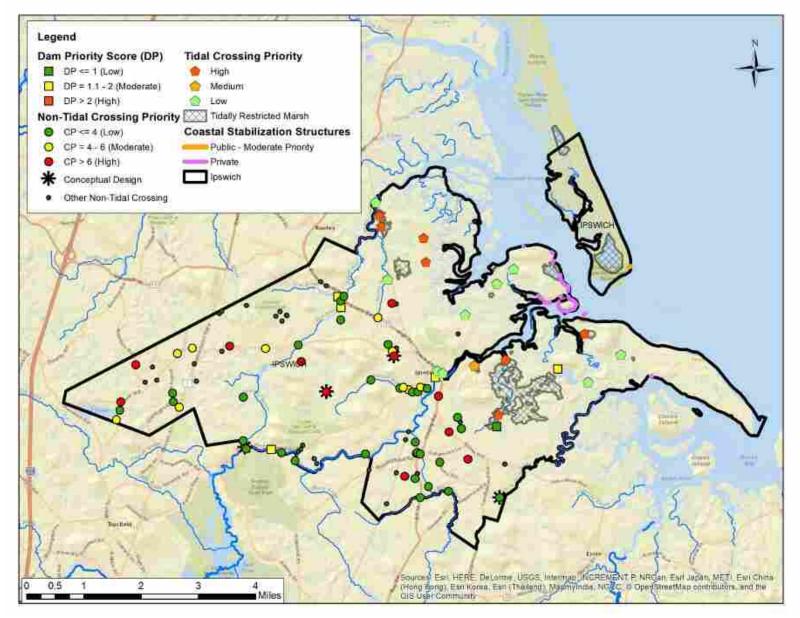



Figure 8. Map showing locations and prioritization scores for dams, non-tidal crossings, tidal restrictions and coastal stabilization structures for the Great Marsh Study region within the Town of Ipswich, MA. Crossings with available conceptual designs and suspected tidally restricted marshes are also noted.

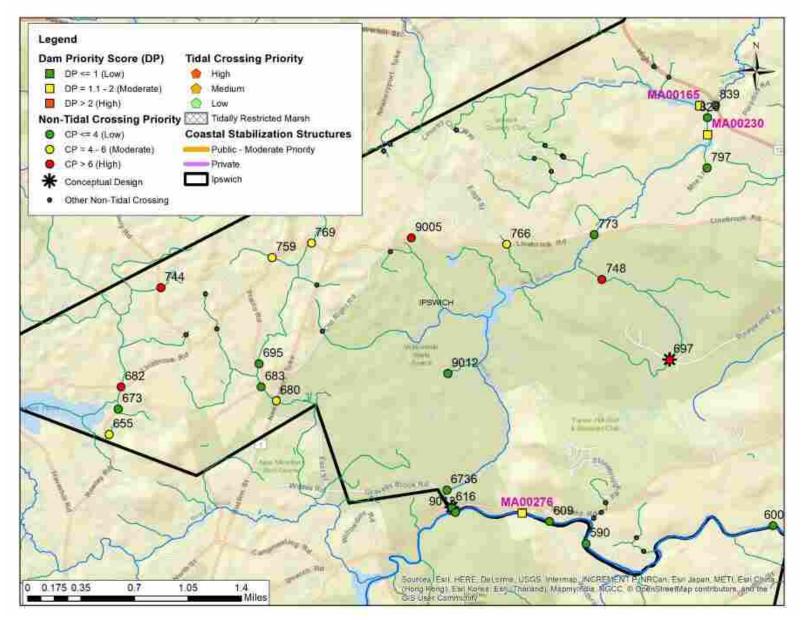



Figure 9. Prioritized structures in the Great Marsh Study region within the western portion of the Town of Ipswich, MA. Dam ID shown in pink, non-tidal crossing ID shown in black and tidal crossing ID shown in green.

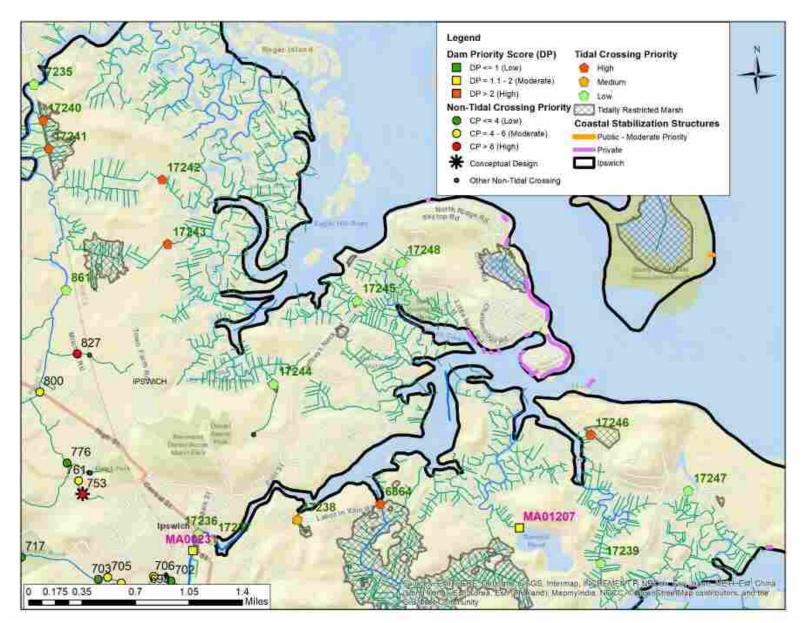



Figure 10. Prioritized structures in the Great Marsh Study region within the northeastern portion of the Town of Ipswich, MA. Dam ID shown in pink, non-tidal crossing ID shown in black and tidal crossing ID shown in green.

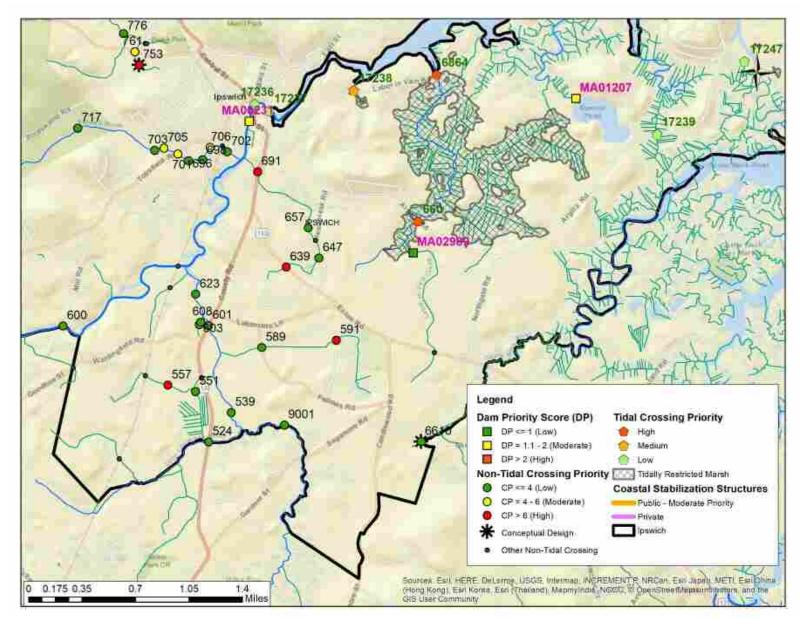



Figure 11. Prioritized structures in the Great Marsh Study region within the southeastern portion of the Town of Ipswich, MA. Dam ID shown in pink, non-tidal crossing ID shown in black and tidal crossing ID shown in green.

|          | Priori | ty Rank |                       |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|-----------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                       |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                       |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                  | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 753      | 1      | 16      | Pineswamp Road        | Single Culvert   | 5.0            | 2.9          | 7.9      | Yes     |
| 639      | 2      | 26      | Essex Road            | Single Culvert   | 5.0            | 2.4          | 7.4      |         |
| 697      | 3      | 43      | Pineswamp Road        | Single Culvert   | 5.0            | 1.8          | 6.8      | Yes     |
| 748      | 4      | 44      | Pineswamp Road        | Single Culvert   | 4.0            | 2.8          | 6.8      |         |
| 744      | 5      | 45      | Newbury Road          | Single Culvert   | 5.0            | 1.8          | 6.8      |         |
| 682      | 6      | 49      | Boxford Road          | Single Culvert   | 5.0            | 1.8          | 6.8      |         |
| 591      | 7      | 90      | Heatherside Lane      | Single Culvert   | 5.0            | 1.4          | 6.4      |         |
| 9005     | 8      | 93      | Linebrook Road        | Single Culvert   | 5.0            | 1.4          | 6.4      |         |
| 827      | 9      | 114     | Mitchell Road         | Multiple Culvert | 5.0            | 1.2          | 6.2      |         |
| 691      | 10     | 123     | County Rd             | Bridge           | 5.0            | 1.1          | 6.1      |         |
| 557      | 11     | 126     | Off Waldingfield Road | Single Culvert   | 5.0            | 1.1          | 6.1      |         |
|          |        |         |                       | Open Bottom      |                |              |          |         |
| 759      | 12     | 135     | Linebrook Road        | Arch             | 5.0            | 1.0          | 6.0      |         |
| 705      | 13     | 146     | Hodgkins              | Single Culvert   | 4.6            | 1.2          | 5.8      |         |
| 706      | 14     | 148     | Hayward Street        | Bridge           | 4.6            | 1.2          | 5.8      |         |
| 769      | 15     | 163     | Linebrook Road        | Single Culvert   | 4.0            | 1.6          | 5.6      |         |
| 800      | 16     | 172     | High Street           | Single Culvert   | 4.6            | 0.9          | 5.5      |         |
| 761      | 17     | 185     | Linebrook Rd          | Single Culvert   | 4.0            | 1.3          | 5.3      |         |
| 680      | 18     | 186     | Newburyport Turnpike  | Single Culvert   | 4.0            | 1.3          | 5.3      |         |
| 766      | 19     | 198     | Linebrook Road        | Single Culvert   | 4.0            | 1.1          | 5.1      |         |
| 701      | 20     | 199     | Topsfield Road        | Bridge           | 4.6            | 0.4          | 5.0      |         |
| 655      | 21     | 211     | Linebrook Road        | Single Culvert   | 3.0            | 1.8          | 4.8      |         |
| 616      | 22     | 248     | Topsfield Road        | Single Culvert   | 0.0            | 3.4          | 3.4      | Yes     |
| 776      | 23     | 256     | School Street         | Single Culvert   | 1.6            | 1.5          | 3.1      |         |
| 647      | 24     | 287     | Heartbreak Road       | Single Culvert   | NA             | 2.4          | 2.4      |         |
| 683      | 25     | 290     | Old Right Road        | Single Culvert   | NA             | 2.3          | 2.3      |         |
| 608      | 26     | 296     | County Rd             | Single Culvert   | NA             | 2.2          | 2.2      |         |
| 589      | 27     | 309     | Fellows Road          | Multiple Culvert | NA             | 2.0          | 2.0      |         |
| 603      | 28     | 311     | County Rd             | Single Culvert   | NA             | 1.9          | 1.9      |         |
| 9012     | 29     | 318     | Off Road              | Single Culvert   | NA             | 1.9          | 1.9      |         |

Table 5. Non-tidal crossings in the portion of the Great Marsh study region within the Town of Ipswich, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted. (Page 1 of 2)

Table 5 (continued). Non-tidal crossings in the portion of the Great Marsh study region within the Town of Ipswich, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted. (Page 2 of 2)

|          | Priori | ty Rank |                     |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|---------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                     |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                     |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 828      | 30     | 351     | High Street         | Single Culvert   | 0.0            | 1.6          | 1.6      |         |
| 657      | 31     | 353     | Off Heartbreak Road | Single Culvert   | NA             | 1.6          | 1.6      |         |
| 673      | 32     | 374     | Linebrook Road      | Single Culvert   | NA             | 1.5          | 1.5      |         |
| 797      | 33     | 379     | Mile Lane           | Multiple Culvert | 0.6            | 0.9          | 1.5      |         |
| 698      | 34     | 410     | Peabody Street      | Multiple Culvert | NA             | 1.3          | 1.3      |         |
| 703      | 35     | 431     | Heard Drive         | Single Culvert   | NA             | 1.1          | 1.1      |         |
| 539      | 36     | 436     | Unnamed Road        | Multiple Culvert | 0.0            | 1.1          | 1.1      |         |
| 524      | 37     | 437     | Route 1A            | Single Culvert   | 0.0            | 1.1          | 1.1      |         |
| 695      | 38     | 453     | Plains Road         | Single Culvert   | NA             | 1.0          | 1.0      |         |
| 6610     | 39     | 469     | Chebacco Road       | Culvert          | NA             | 0.9          | 0.9      | Yes     |
| 551      | 40     | 482     | Off Route 1A        | Single Culvert   | NA             | 0.8          | 0.8      |         |
| 696      | 41     | 483     | Safford Street      | Single Culvert   | NA             | 0.8          | 0.8      |         |
| 773      | 42     | 485     | Linebrook Road      | Single Culvert   | 0.0            | 0.8          | 0.8      |         |
| 717      | 43     | 496     | Pineswamp Road      | Bridge           | 0.6            | 0.1          | 0.7      |         |
| 590      | 44     | 504     | Off Winthrop Street | Bridge           | 0.0            | 0.7          | 0.7      |         |
| 609      | 45     | 508     | Willowdale Road     | Bridge           | NA             | 0.7          | 0.7      |         |
| 839      | 46     | 515     | High Street         | Bridge           | 0.0            | 0.6          | 0.6      |         |
| 702      | 47     | 517     | Kimball Street      | Bridge           | 0.0            | 0.6          | 0.6      |         |
| 623      | 48     | 543     | Unnamed Road        | Bridge           | 0.0            | 0.5          | 0.5      |         |
| 601      | 49     | 546     | Route 1A            | Bridge           | 0.0            | 0.4          | 0.4      |         |
| 6736     | 50     | 557     | Off Road            | Bridge           | 0.0            | 0.3          | 0.3      |         |
| 9001     | 51     | 571     | Unnamed Road        | Bridge           | 0.0            | 0.3          | 0.3      |         |
| 9013     | 52     | 597     | Off Topsfield Road  | Bridge           | NA             | 0.1          | 0.1      |         |
|          |        |         |                     | Open Bottom      |                |              |          |         |
| 600      | 53     | 607     | Mill Road           | Arch             | NA             | 0.0          | 0.0      |         |

Table 6. Prioritized tidal crossings in the portion of the Great Marsh study region within the Town of Ipswich, MA. Sites with available conceptual designs and/or associated rapid technical assessments (RTA) from the Draft Great Marsh Coastal Wetlands Restoration Plan are noted.

|          |                                        |            |                     |          | Tidal    |           |
|----------|----------------------------------------|------------|---------------------|----------|----------|-----------|
| Crossing |                                        |            | <b>GMP</b> Priority | Local    | Crossing | Design or |
| ID       | Road/Site                              | Public Way | Marsh               | Priority | Priority | RTA       |
| 660      | Argilla Road (Labor in Vain Creek)     | Yes        | Medium              |          | High     | RTA       |
|          | Labor in Vain Road (Labor in Vain      |            |                     |          |          |           |
| 6864     | Creek)                                 | Yes        | Medium              |          | High     | RTA       |
| 17240    | MBTA Marsh West of Rowley River (N)    | Yes        | Medium              |          | High     |           |
| 17241    | MBTA Marsh West of Rowley River (S)    | Yes        | Medium              |          | High     |           |
| 17242    | Town Farm Road North                   | Yes        | Medium              |          | High     |           |
| 17243    | Town Farm Road South                   | Yes        | Medium              |          | High     |           |
| 17246    | Trustees East side of Castle Hill      | No         | High                |          | High     |           |
|          | Labor in Vain Road West of Riverside   |            |                     |          |          |           |
| 17238    | Drive                                  | Yes        | Low                 |          | Medium   |           |
| 861      | Muddy Run East of Paradise Road        | No         | NIP                 |          | Low      |           |
| 17235    | MBTA (Rowley River)                    | Yes        | NIP                 |          | Low      |           |
| 17236    | Choate Bridge (lpswich River)          | Yes        | NIP                 |          | Low      |           |
| 17237    | County Street Bridge (Ipswich River)   | Yes        | NIP                 |          | Low      |           |
| 17239    | Argilla Road (Fox Creek)               | Yes        | NIP                 |          | Low      |           |
|          | West of Jeffrey's Neck Road South of   |            |                     |          |          |           |
| 17244    | Greenwod Farm Road                     | No         | NIP                 |          | Low      |           |
|          | West of Jeffrey's Neck Road North of   |            |                     |          |          |           |
| 17245    | Island Park                            | No         | NIP                 |          | Low      |           |
| 17247    | Argilla Road (Castle Neck Creek)       | Yes        | NIP                 |          | Low      |           |
| 17248    | Little Neck Road West of Mulholland Dr | Yes        | NIP                 |          | Low      |           |

| Structure | Structure |                  |                       |               | Length   |
|-----------|-----------|------------------|-----------------------|---------------|----------|
| Category  | Priority  | Structure Type   | Structure ID          | Location Note | (meters) |
| Public    | Moderate  | Groin/ Jetty     | 036-016-000-002-100   | Plum Island   | 39       |
|           |           | Revetment        | 144-024C-069-000-001  |               | 601      |
|           |           | Revetment        | 144-024A-097-000-002  |               | 304      |
|           |           | Revetment        | 144-024A-106-000-001  |               | 146      |
|           |           | Revetment        | 144-023D-052K-000-001 |               | 139      |
|           |           | Bulkhead/Seawall | 144-024C-069-011-001  |               | 110      |
|           |           | Revetment        | 144-024C-069-000-002  |               | 89       |
|           |           | Groin/Jetty      | 144-000-000-000-001   |               | 80       |
|           |           | Revetment        | 144-024C-069-000-007  |               | 70       |
|           |           | Bulkhead/Seawall | 144-024C-069-000-006  |               | 55       |
|           | NA        | Revetment        | 144-034-002-000-001   |               | 52       |
|           |           | Bulkhead/Seawall | 144-015D-029-000-001  |               | 49       |
| Private   |           | Revetment        | 144-015D-014-000-001  |               | 44       |
| Privale   | INA       | Bulkhead/Seawall | 144-024A-112-000-001  |               | 40       |
|           |           | Revetment        | 144-023D-086-000-001  |               | 33       |
|           |           | Bulkhead/Seawall | 144-024C-195-000-001  |               | 30       |
|           |           | Bulkhead/Seawall | 144-024C-069-000-004  |               | 28       |
|           |           | Revetment        | 144-024C-069-000-003  |               | 24       |
|           |           | Bulkhead/Seawall | 144-024A-111-000-001  |               | 21       |
|           |           | Bulkhead/Seawall | 144-024A-097-000-001  |               | 20       |
|           |           | Bulkhead/Seawall | 144-024A-102-000-001  |               | 20       |
|           |           | Groin/Jetty      | 144-015A-013-000-001  |               | 19       |
|           |           | Revetment        | 144-024C-069-000-005  |               | 18       |
|           |           | Revetment        | 144-023D-052D-000-001 |               | 18       |
|           |           | Groin/Jetty      | 144-023D-052C-000-001 |               | 14       |
|           |           |                  | Total                 |               | 2063     |

Table 7. Coastal stabilization structures in in the portion of the Great Marsh study region within the Town of Ipswich, MA.

### Newbury

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of Newbury. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation and included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>10</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. Here we provide detailed results from the prioritization of the four barrier types. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>11</sup>.

The majority of Newbury is located in the study region, covering an area of approximately 23.4 square miles.

Newbury is one of seven municipalities with land within the coastal portion of the Great Marsh study region and all four structure types are present (Figure 14). Our analysis considered a total of 86 structures including 9 dams (Table 8), 30 non-tidal crossings (Table 9), 26 tidal crossings (Table 10), and 21 coastal stabilization structures (Table 11).

The Parker River Dam #1 (a.k.a. Central Street Dam) is the highest priority dam in Ipswich and is tied for 5th ranked dam across the study region based on our numeric screening system (Table 8). This dam has an actively managed fishway that is closely monitored and maintained during the annual river herring migration and has been passing alewife and



Figure 12. Parker River Dam #2 (Larkin Road Dam) in Newbury (MA00240)

blueback herring quite effectively in recent years. The Parker River Dam #2 (a.k.a. Larkin Road Dam) farther upstream appears to present more of a migration barrier and failure risk based on professional judgment. The Larkin Dam and fishway are both in need of significant maintenance and the fishway seems to be less effective at passing river herring. The Larkin Dam was the subject of a dam removal feasibility study which found the cost of removal would be less than the cost of repair. Since the dam no longer serves its design purpose, the Town of Newbury has been seeking funds to remove the structure and restore the river at that site.

We inventoried and prioritized a total of 30 non-tidal crossings in the Town of Newbury. The screening results identify several high priority crossings including six crossings that are among the 50 poorest scoring sites in the

<sup>&</sup>lt;sup>10</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>11</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

region based on combined ecological and infrastructure risk (Table 9). The crossing on Parker Street/Scotland Road (Site #1203) at the Newburyport city line has been identified as a local priority for replacement due to flooding and maintenance concerns. This 2-cell culvert spans the town boundary and the two municipalities share ownership of it. It is the second highest priority non-tidal crossing in the City of Newburyport. Poor scores in the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (Ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream



Figure 13. Perched outlet of non-tidal crossing at Coleman Road in Newbury (Site #1054)

watershed and/or mismatched to the natural grade of the stream bed. The five crossings that scored the poorest are all single culverts that could likely be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance. Any crossing with infrastructure risk index (CRI) scores above 4 is showing possible inability to pass flow from storms that have a 50% chance of occurring on any given year. While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms.

Our evaluation identified nine high priority tidal crossings (Table 10). Four high priority crossings (1192, 17334, 1196 and 17336) along the Little River were identified by town representatives as areas of concern due to flow restriction. These sites have shown visible restriction of outgoing flow (i.e. hydraulic head loss from upstream to downstream) during past large storm events and may contribute to upstream flooding<sup>12</sup>. High priority tidal

crossings were identified based on the combination of their association with a public road (public way), whether they were listed as priority sites in the Draft Great Marsh Coastal Wetlands Restoration Plan<sup>13</sup> and whether they had been identified as a priority by municipal other partners. Our methodology for assessing tidal crossing structures was less quantitative than the ones we used to assess non-tidal crossings, but given increasing sea level and storm intensities any structure already subject to tidal exchange is at risk. We would suggest that the structures that we have identified as high priority are worth a closer, more rigorous analysis where and when possible. The Great Marsh Plan provides rapid technical assessments of three of the high priority tidal crossings identified in this analysis.

There is a total of 21 coastal stabilization structures identified in the Town of Newbury all but two of which are private structures (Table 11). One of the public structures, located east of the Dartmouth Way/Southern Boulevard intersection, is flagged as high priority in our screening. There is an estimated total of 719 meters of hardened shoreline in Newbury, mainly concentrated on the eastern shore of the Plum Island inlet known as The Basin (Figure 14).

As part of this study, Meridian Associates, Inc. (MAI) developed sketch conceptual sketch designs for the replacement of 12 high priority non-tidal crossings with structures designed to increase aquatic connectivity and

<sup>&</sup>lt;sup>12</sup> John O'Connell, personal communication, January 22, 2018

<sup>&</sup>lt;sup>13</sup> Developed by Massachusetts Office of Coastal Zone Management's Wetlands Restoration Program (WRP), (now part of the MA Division of Ecological Restoration) - 2006

resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures<sup>14</sup>. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. These designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

Meridian design materials are located in Appendix 3

- Supporting materials begin on page 180
- Newbury designs begin on page 235

<sup>&</sup>lt;sup>14</sup> Sites #1053, #1056, #1058 and #1069 are in succession on one stream and sites #1049 and #1054 are in succession on a neighboring stream both of which are tributaries to the Parker River.

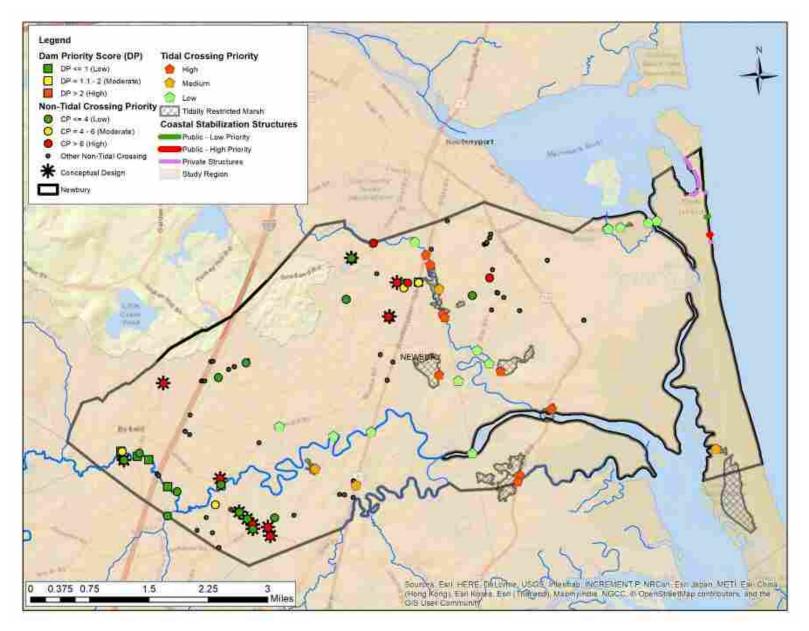



Figure 14. Map showing locations and prioritization scores for dams, non-tidal crossings, tidal restrictions and coastal stabilization structures for the Great Marsh Study region within the Town of Newbury, MA. Crossings with available conceptual designs and suspected tidally restricted marshes are also noted.



Figure 15. Prioritized structures in the Great Marsh Study region within the western portion of the Town of Newbury, MA. Dam ID shown in pink, non-tidal crossing ID shown in black and tidal crossing ID shown in green.

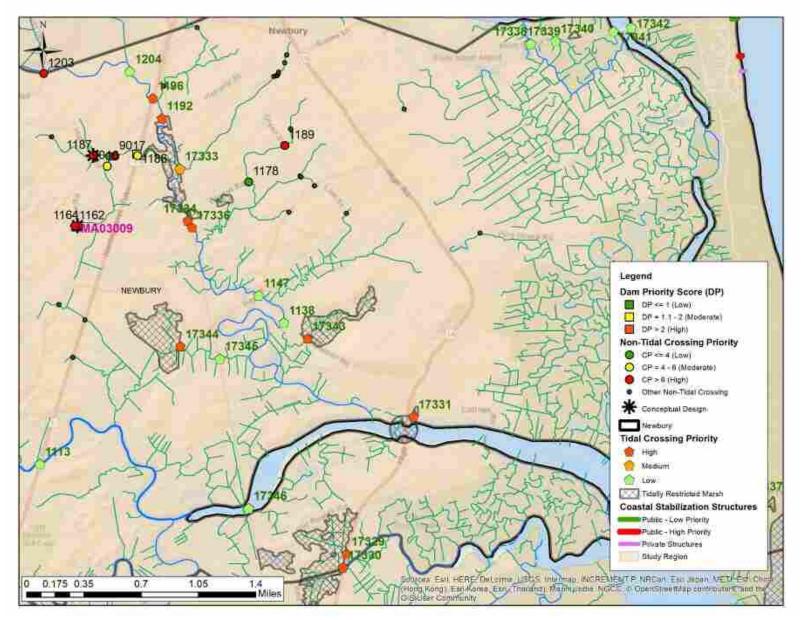



Figure 16. Prioritized structures in the Great Marsh Study region within the central portion of the Town of Newbury, MA. Dam ID shown in pink, non-tidal crossing ID shown in black and tidal crossing ID shown in green.

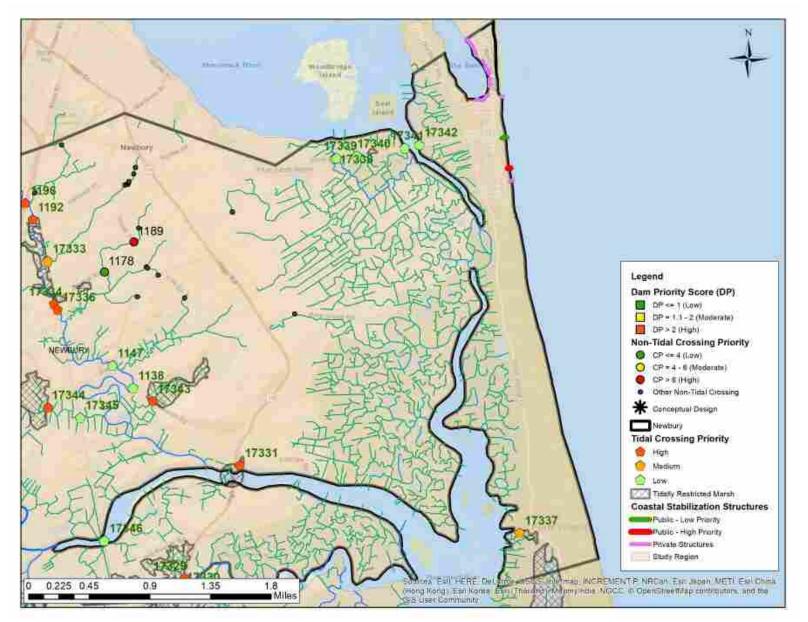



Figure 17. Prioritized structures in the Great Marsh Study region within the eastern portion of the Town of Newbury, MA. Dam ID shown in pink, non-tidal crossing ID shown in black and tidal crossing ID shown in green.

Table 8. Dams in the portion of the Great Marsh study region within the Town of Newbury, MA prioritized by Dam Priority Score (DP). The Parker River Dam #2 (Larkin Dam) is flagged as a priority due to poor condition needed fishway maintenance.

|         | Priority Rank |        |                                  | Pri            | ority Scoring | 5          | Active/  |
|---------|---------------|--------|----------------------------------|----------------|---------------|------------|----------|
|         |               |        |                                  | Infrastructure | Ecological    | Priority   | Priority |
| Dam ID  | Town          | Region | Dam Name                         | Risk (RI)      | Impact (EI)   | Score (DP) | Project  |
|         |               |        | Parker River Dam #1 (Central     |                |               |            |          |
| MA00241 | 1             | 5      | Street)                          | 0.5            | 1.5           | 2          |          |
| MA01211 | 2             | 12     | Mill Pond Dam                    | 0.5            | 1             | 1.5        |          |
| MA03008 | 2             | 12     | Blackwell Dam                    | 0.5            | 1             | 1.5        |          |
| MA00240 | 4             | 30     | Parker River Dam #2 (Larkin)     | 0              | 1             | 1          | Priority |
|         |               |        | Parker River Dam #4 (Blacksmith  |                |               |            |          |
| MA00242 | 4             | 30     | Shop)                            | 0              | 1             | 1          |          |
| MA01596 | 4             | 30     | Parker River Dam #3 (Snuff Mill) | 0              | 1             | 1          |          |
|         |               |        | Parker River Dam #5 (River       |                |               |            |          |
| MA01598 | 4             | 30     | Street)                          | 0              | 1             | 1          |          |
| MA03009 | 4             | 45     | Highfield Road Dam               | 0              | 1             | 1          |          |
|         |               |        | Parker River Dam South At River  |                |               |            |          |
| MA01597 | 9             | 45     | St.                              | 0              | 0.5           | 0.5        |          |

Table 9. Non-tidal crossings in the portion of the Great Marsh study region within the Town of Newbury, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted. \*Site #1203 is on the town line and ownership is shared with the City of Newburyport.

|          | Priority Rank |        |                          | Priority Scoring |                |            |          |         |
|----------|---------------|--------|--------------------------|------------------|----------------|------------|----------|---------|
|          |               |        |                          |                  |                | Ecological | Crossing |         |
| Crossing |               |        |                          |                  | Infrastructure | Impact     | Priority | Concept |
| ID       | Town          | Region | Road                     | Structure Type   | Risk (CRI)     | (CEI)      | (CP)     | Designs |
| 1054     | 1             | 5      | Coleman Road             | Single Culvert   | 5.0            | 3.9        | 8.9      | Yes     |
| 1162     | 2             | 21     | Off Middle Road          | Single Culvert   | 4.6            | 3.0        | 7.6      |         |
| 1094     | 3             | 22     | Orchard Street           | Single Culvert   | 2.6            | 5.0        | 7.6      | Yes     |
| 9017     | 4             | 32     | Off Middle Road          | Single Culvert   | 5.0            | 2.0        | 7.0      |         |
| 1049     | 5             | 40     | Off Coleman Road         | Single Culvert   | 4.0            | 2.9        | 6.9      | Yes     |
| 1187     | 6             | 46     | Highfield Road           | Multiple Culvert | 5.0            | 1.8        | 6.8      | Yes     |
| 1125     | 7             | 74     | Main Street              | Multiple Culvert | 4.0            | 2.6        | 6.6      | Yes     |
| 1189     | 8             | 99     | Green Street             | Single Culvert   | 5.0            | 1.3        | 6.3      |         |
|          |               |        | Parker Street/Scotland   |                  |                |            |          |         |
| 1203     | 9*            | 103    | Road                     | Multiple Culvert | 5.0            | 1.3        | 6.3      |         |
| 1056     | 10            | 106    | School Street            | Single Culvert   | 5.0            | 1.3        | 6.3      | Yes     |
| 1164     | 11            | 133    | Middle Road              | Multiple Culvert | 5.0            | 1.0        | 6.0      | Yes     |
| 1186     | 12            | 167    | Newburyport turnpike     | Single Culvert   | 5.0            | 0.6        | 5.6      |         |
| 9016     | 13            | 187    | Off Middle Road          | Bridge           | 4.0            | 1.3        | 5.3      |         |
| 1076     | 14            | 205    | Fatherland Drive         | Multiple Culvert | 4.0            | 0.9        | 4.9      |         |
|          |               |        |                          | Open Bottom      |                |            |          |         |
| 1108     | 15            | 221    | River Road               | Arch             | 3.6            | 0.8        | 4.4      |         |
| 1053     | 16            | 255    | Elm Street               | Single Culvert   | 0.0            | 3.1        | 3.1      | Yes     |
| 1069     | 17            | 274    | Off School Street        | Single Culvert   | 0.0            | 2.5        | 2.5      | Yes     |
| 1130     | 18            | 291    | Burns WMA West Road      | Single Culvert   | NA             | 2.2        | 2.2      |         |
| 1058     | 19            | 293    | Off School Street        | Single Culvert   | 0.0            | 2.2        | 2.2      | Yes     |
| 1185     | 20            | 300    | Middle Road              | Single Culvert   | 0.0            | 2.1        | 2.1      |         |
| 1194     | 21            | 328    | Scotland Road            | Single Culvert   | 0.0            | 1.8        | 1.8      | Yes     |
| 1099     | 22            | 337    | River Street             | Single Culvert   | 0.0            | 1.8        | 1.8      | Yes     |
|          |               |        |                          | Open Bottom      |                |            |          |         |
| 1089     | 23            | 361    | Central Street           | Arch             | 0.0            | 1.6        | 1.6      |         |
| 7156     | 24            | 405    | Elm Street               | Multiple Culvert | NA             | 1.3        | 1.3      |         |
| 1178     | 25            | 440    | Boston Road              | Single Culvert   | 0.0            | 1.1        | 1.1      |         |
| 7160     | 26            | 481    | Parish Road              | Bridge           | 0.0            | 0.8        | 0.8      |         |
| 1105     | 27            | 512    | Main Street              | Bridge           | 0.0            | 0.6        | 0.6      |         |
| 1139     | 28            | 535    | WMA power line and trail | Ford             | NA             | 0.5        | 0.5      |         |
| 1176     | 29            | 554    | Off Highfield Road       | Bridge           | NA             | 0.4        | 0.4      |         |
| 1086     | 30            | 585    | Larkin Street            | Bridge           | 0.0            | 0.2        | 0.2      |         |

Table 10. Prioritized tidal crossings in the portion of the Great Marsh study region within the Town of Newbury, MA. Sites with available conceptual designs and/or associated rapid technical assessments (RTA) from the Draft Great Marsh Coastal Wetlands Restoration Plan are noted.

|          |                                        |            |                     |          | Tidal    |           |
|----------|----------------------------------------|------------|---------------------|----------|----------|-----------|
| Crossing |                                        |            | <b>GMP</b> Priority | Local    | Crossing | Design or |
| ID       | Road/Site                              | Public Way | Marsh               | Priority | Priority | RTA       |
| 17329    | Route 1A - 500 ft N of Rowley Line     | Yes        | High                |          | High     | RTA       |
| 17330    | Route 1A - Rowley Town Line            | Yes        | High                |          | High     | RTA       |
| 17343    | Newman Road East of Little River       | Yes        | High                |          | High     | RTA       |
| 17331    | River Front                            | Yes        | Medium              |          | High     |           |
| 17344    | Kents Island Road                      | No         | Medium              | Yes High |          | RTA       |
| 1192     | Hanover Street                         | Yes        | Low                 | Yes      | High     |           |
| 17334    | Boston Road                            | Yes        | Low                 | Yes      | High     |           |
| 1196     | Newburyport Turnpike (Little River)    | Yes        | NIP                 | Yes      | High     |           |
| 17336    | MBTA - Little River S of Boston Road   | Yes        | NIP                 | Yes      | High     |           |
|          | Newburyport Turnpike South End         |            |                     |          |          |           |
| 17328    | Newbury Golf Club                      | Yes        | Low                 |          | Medium   |           |
| 17333    | MBTA West Bank Little River            | Yes        | Low                 |          | Medium   |           |
| 17337    | West of Plum Island Drive              | No         | Medium              |          | Medium   |           |
| 17347    | West of Middle Road                    | No         | Medium              |          | Medium   |           |
| 1111     | Middle Road                            | Yes        | NIP                 |          | Low      |           |
| 1113     | Newburyport Turnpike (Parker River)    | Yes        | NIP                 |          | Low      |           |
| 1138     | Newman Road (Little River)             | Yes        | NIP                 |          | Low      |           |
| 1147     | Hay Street                             | Yes        | NIP                 |          | Low      |           |
| 1204     | Power Line Off Highfield Road          | No         | NIP                 |          | Low      |           |
| 17332    | Orchard Street                         | Yes        | NIP                 |          | Low      |           |
|          | Plum Island Turnpike (Plumbush Creek - |            |                     |          |          |           |
| 17338    | West)                                  | Yes        | NIP                 |          | Low      |           |
| 17339    | Plum Island Turnpike (Plumbush Creek)  | Yes        | NIP                 |          | Low      |           |
|          | Plum Island Turnpike West of Plum      |            |                     |          |          |           |
| 17340    | Bush Downs                             | Yes        | NIP                 |          | Low      |           |
| 17341    | Plum Island Turnpike Bridge West       | Yes        | NIP                 |          | Low      |           |
| 17342    | Plum Island Turnpike Bridge East       | Yes        | NIP                 |          | Low      |           |
| 17345    | MBTA South of Hay Street               | Yes        | NIP                 |          | Low      |           |
| 17346    | MBTA (Parker River)                    | Yes        | NIP                 |          | Low      |           |

| Structure | Structure |                  |                      |                             | Length   |
|-----------|-----------|------------------|----------------------|-----------------------------|----------|
| Category  | Priority  | Structure Type   | Structure ID         | Location Note               | (meters) |
| Public    | Low       | Groin/ Jetty     | 050-002U-000-029-100 | Plum Island Boulevard       | 59       |
|           | High      | Groin/ Jetty     | 050-002U-000-044-100 | Plum Island - Dartmouth Way | 32       |
|           |           | Bulkhead/Seawall | 205-U04-000-078-001  |                             | 29       |
|           |           | Revetment        | 205-U04-000-077-001  |                             | 17       |
|           | NA        | Bulkhead/Seawall | 205-U04-000-074-001  |                             | 71       |
|           |           | Bulkhead/Seawall | 205-U04-000-072-001  |                             | 32       |
|           |           | Bulkhead/Seawall | 205-U04-000-070-001  |                             | 21       |
|           |           | Bulkhead/Seawall | 205-U04-000-069-001  |                             | 23       |
|           |           | Revetment        | 205-U04-000-067-001  |                             | 34       |
| Private   |           | Bulkhead/Seawall | 205-U04-000-066-001  |                             | 10       |
|           |           | Revetment        | 205-U04-000-009-001  |                             | 12       |
|           |           | Revetment        | 205-U04-000-003-001  |                             | 113      |
|           |           | Revetment        | 205-U03-000-166-001  |                             | 43       |
|           |           | Revetment        | 205-U03-000-133-001  |                             | 42       |
|           |           | Revetment        | 205-U03-000-123-001  |                             | 38       |
|           |           | Groin/Jetty      | 205-U03-000-187-001  |                             | 19       |
|           |           | Bulkhead/Seawall | 205-U03-000-163-001  |                             | 26       |
|           |           | Bulkhead/Seawall | 205-U03-000-162-001  |                             | 15       |
|           |           | Revetment        | 205-U03-000-128-001  |                             | 19       |
|           |           | Bulkhead/Seawall | 205-U03-000-129-001  |                             | 18       |
|           |           | Groin/Jetty      | 205-U01-000-010-001  |                             | 45       |
| Total     |           |                  |                      |                             |          |

Table 11. Coastal stabilization structures in the portion of the Great Marsh study region within the Town of Newbury, MA.

### Newburyport

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the City of Newburyport. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and the PIE-Rivers Region<sup>15</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. Here we provide detailed results from the prioritization of the four barrier types. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>16</sup>.

The entire City of Newburyport is located in the study region, covering an area of approximately 8.8 square miles. Newburyport is one of seven municipalities with land within the coastal portion of the Great Marsh study region and all four structure types are present (Figure 19). Our analysis considered a total of 52 structures including; 4 dams (Table 12), 14 non-tidal crossings (Table 13), 4 tidal crossings (Table 14), and 31 coastal stabilization structures (Table 15).



Three of the four dams in Newburyport are water supply dams located along the Artichoke

Figure 18. Inlet of non-tidal crossing under Parker Street/Scotland Road at Newbury town line in Newburyport (Site #1203)

River on the western edge of the city. The Fred Maudslay Dam, located within Maudslay State Park is not associated with a water supply and is tied for 13th in priority rank across the study region based on our screening system (Table 12). While this structure ranks fairly high, it does not appear to offer a large restoration opportunity based on a best professional judgment assessment of potential upstream habitat and downstream property risk in the event of dam failure.

We inventoried and prioritized a total of 14 non-tidal crossings in the City of Newburyport<sup>17</sup>. A culvert on Pheasant Run Drive (Site # 1231) ranked the poorest in the city (30<sup>th</sup> poorest in the region) based on combined ecological and infrastructure risk (Table 13). The second highest priority non-tidal crossing in the city is located on Parker Street/Scotland Road (Site #1203) at the Newbury town line. The two municipalities share ownership of this 2-cell culvert, which has been identified as a local priority for replacement due to flooding and maintenance concerns. Poor scores in the screening tool generally indicate that structures are less likely to

<sup>&</sup>lt;sup>15</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>16</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

<sup>&</sup>lt;sup>17</sup> One crossing (site #1203) is on the town line and ownership is shared with the Town of Newbury. This structure is included in data sets for both municipalities.

function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (Ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. Four of the five crossings that scored the poorest are single or multiple culverts that could likely be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance. Any crossing with infrastructure risk index (CRI) scores of higher than 4 is showing possible inability to pass flow from storms that have a 50% chance of occurring on any given year. While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms.

High priority tidal crossings were identified based on the combination of their association with a public road (public way), whether they were listed as priority sites in the Draft Great Marsh Coastal Wetlands Restoration Plan<sup>18</sup> and whether they had been identified as a priority by municipal other partners. The four tidal crossings considered as part of our analysis all rank as low priority (Table 14). Three of the four structures are all major bridge crossings of the Merrimack River. The City of Newburyport has few roads within the tidal zone and, as a result few tidal crossings.

There are 31 coastal stabilization structures identified in the City of Newburyport of which 14 are private and 17 are public structures (Table 15). Six of the public structures were categorized as moderate priority and none were high priority. There is an estimated total of more than 2 kilometers of hardened shoreline in Newburyport, mainly concentrated on the lower Merrimack River and the eastern shore of the Plum Island inlet known as The Basin (Figure 19).

As part of this study, Meridian Associates, Inc. (MAI) developed sketch conceptual sketch designs for the replacement of 2 high priority non-tidal crossings with structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures<sup>19</sup>. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. These designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

Meridian design materials are located in Appendix 3

- Supporting materials begin on page 180
- Newburyport designs begin on page 248

<sup>&</sup>lt;sup>18</sup> Developed by Massachusetts Office of Coastal Zone Management's Wetlands Restoration Program (WRP), (now part of the MA Division of Ecological Restoration) - 2006

<sup>&</sup>lt;sup>19</sup> The two crossings on Hale Street (Sites #1218 and #1225) were selected for design in part because they were identified as significant concern for flooding by staff from the City of Newburyport

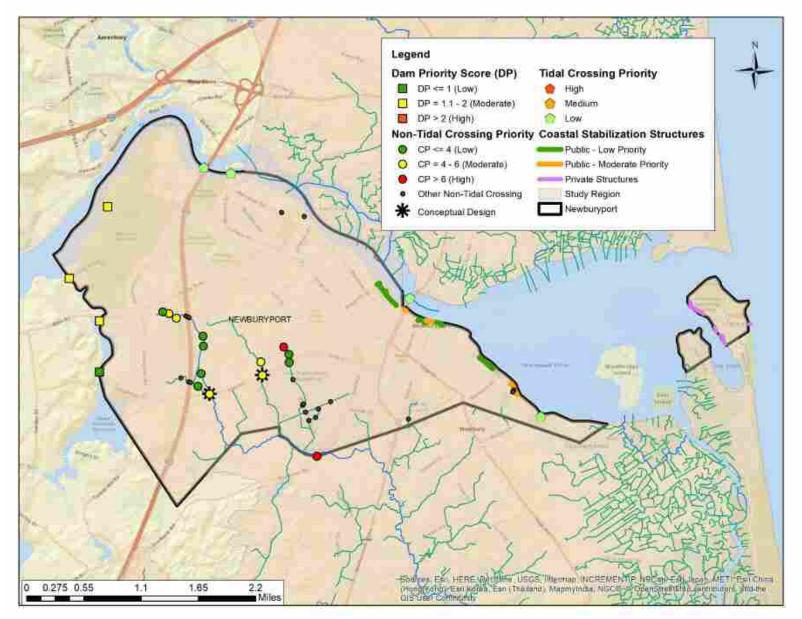



Figure 19. Map showing locations and prioritization scores for dams, non-tidal crossings, tidal crossings and coastal stabilization structures for the Great Marsh Study region within the City of Newburyport, MA. Crossings with available conceptual designs are also noted.

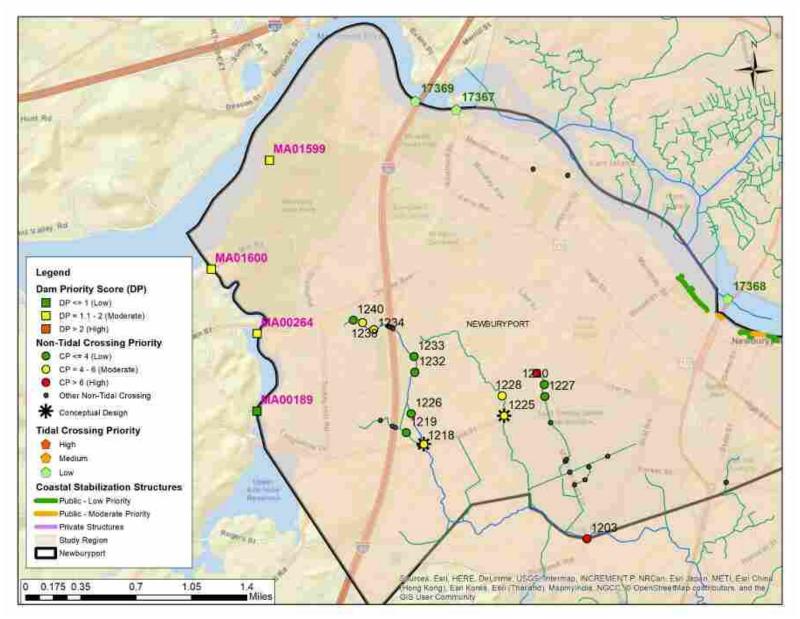



Figure 20. Prioritized structures in the Great Marsh Study region within the western portion of the City of Newburyport, MA. Dam ID shown in pink, non-tidal crossing ID shown in black and tidal crossing ID shown in green.

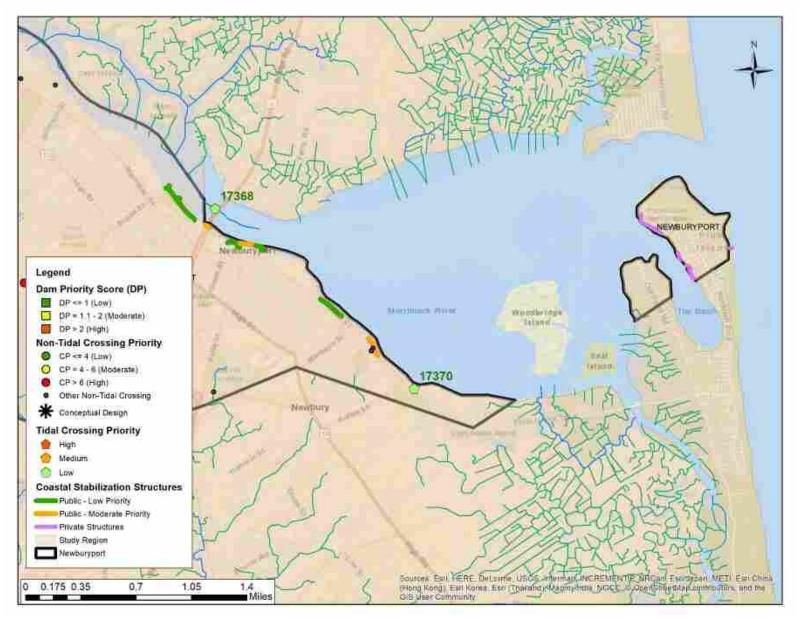



Figure 21. Prioritized structures in the Great Marsh Study region within the eastern portion of the City of Newburyport, MA. Dam ID shown in pink, non-tidal crossing ID shown in black and tidal crossing ID shown in green.

Table 12. Dams in the portion of the Great Marsh study region within the City of Newburyport, MA prioritized by Dam Priority Score (DP).

|         | Priority Rank |        |                               | Pri                         | ority Scoring             | 5                      |                   |
|---------|---------------|--------|-------------------------------|-----------------------------|---------------------------|------------------------|-------------------|
| Dam ID  | Town          | Region | Dam Name                      | Infrastructure<br>Risk (RI) | Ecological<br>Impact (EI) | Priority<br>Score (DP) | Active<br>Project |
| MA01599 | 1             | 12     | Fred Maudslay Dam             | 0.5                         | 1                         | 1.5                    |                   |
| MA01600 | NA            | NA     | Artichoke River Dam           | 0.5                         | 1                         | 1.5                    |                   |
| MA00264 | NA            | NA     | Lower Artichoke Reservoir Dam | 0.5                         | 1                         | 1.5                    |                   |
| MA00189 | NA            | NA     | Upper Artichoke Reservoir Dam | 0.5                         | 0.5                       | 1                      |                   |

Table 13. Non-tidal crossings in the portion of the Great Marsh study region within the City of Newburyport, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted. \*Site #1203 is on the town line and ownership is shared with the Town of Newbury.

|          | Priori | ty Rank |                         |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|-------------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                         |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                         |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                    | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 1231     | 1      | 30      | Pheasant Run Drive      | Multiple Culvert | 5.0            | 2.1          | 7.1      |         |
|          |        |         | Parker Street/Scotland  |                  |                |              |          |         |
| 1203     | 2*     | 103     | Road                    | Multiple Culvert | 5.0            | 1.3          | 6.3      |         |
| 1234     | 3      | 151     | Storeybrook Drive       | Single Culvert   | 2.6            | 3.1          | 5.7      |         |
| 1218     | 4      | 154     | Hale Street             | Multiple Culvert | 4.0            | 1.7          | 5.7      | Yes     |
| 1228     | 5      | 156     | Doe Run Drive           | Bridge           | 5.0            | 0.7          | 5.7      |         |
| 1225     | 6      | 179     | Hale Street             | Multiple Culvert | 4.0            | 1.4          | 5.4      | Yes     |
| 1238     | 7      | 194     | Virginia Lane           | Single Culvert   | 2.6            | 2.6          | 5.2      |         |
| 1240     | 8      | 246     | Lt Leary Drive          | Single Culvert   | 1.6            | 1.9          | 3.5      |         |
| 1233     | 9      | 286     | Little River Bike Trail | Single Culvert   | NA             | 2.4          | 2.4      |         |
| 1230     | 10     | 288     | Fox Run Drive           | Multiple Culvert | 0.6            | 1.7          | 2.3      |         |
| 1226     | 11     | 289     | Little River Bike Trail | Single Culvert   | NA             | 2.3          | 2.3      |         |
| 1219     | 12     | 295     | Off I 95                | Single Culvert   | NA             | 2.2          | 2.2      |         |
| 1232     | 13     | 299     | Newburyport bike path   | Single Culvert   | NA             | 2.1          | 2.1      |         |
| 1227     | 14     | 301     | Hale Street             | Single Culvert   | 0.0            | 2.1          | 2.1      |         |

Table 14. Prioritized tidal crossings in the portion of the Great Marsh study region within the City of Newburyport, MA. Sites with available conceptual designs and/or associated rapid technical assessments (RTA) from the Draft Great Marsh Coastal Wetlands Restoration Plan are noted.

|          |                                       |            |              |          | Tidal    |           |
|----------|---------------------------------------|------------|--------------|----------|----------|-----------|
| Crossing |                                       |            | GMP Priority | Local    | Crossing | Design or |
| ID       | Road/Site                             | Public Way | Marsh        | Priority | Priority | RTA       |
| 17367    | Spofford Street over Merrimack        | Yes        | NIP          |          | Low      |           |
| 17368    | Route 1 over Merrimack                | Yes        | NIP          |          | Low      |           |
| 17369    | Interstate 95 over Merrimack          | Yes        | NIP          |          | Low      |           |
| 17370    | Plum Island Turnpike near Rolfes Lane | Yes        | NIP          |          | Low      |           |

Table 15. Coastal stabilization structures in the portion of the Great Marsh study region within the City of Newburyport, MA.

| Structure | Structure |                   |                      |                            | Length   |
|-----------|-----------|-------------------|----------------------|----------------------------|----------|
| Category  | Priority  | Structure Type    | Structure ID         | Location Note              | (meters) |
|           | Low       |                   | 051-011-000-001B-400 | Railroad Avenue            | 37       |
|           | Low       | Revetment         | 051-054-000-003-200  | Cashman Park               | 134      |
|           | Low       | Revetment         | 051-054-000-003-100  | Cashman Park               | 178      |
|           | Low       |                   | 051-011-000-001B-300 | Railroad Avenue            | 72       |
|           | Low       |                   | 051-011-000-001B-200 | Railroad Avenue            | 97       |
|           | Low       |                   | 051-012-000-009-100  | Fish Coop                  | 86       |
|           | Low       | Bulkhead/ Seawall | 051-026-000-028-100  | Harrison Street Joppa Park | 276      |
|           | Low       | Bulkhead/ Seawall | 051-012-000-009-200  | Harbor Master Office Area  | 24       |
| Public    | Low       | Revetment         | 051-012-000-009-300  | Harbor Master Building     | 18       |
|           | Low       | Revetment         | 051-054-000-003-300  | Cashman Park               | 263      |
|           | Moderate  | Bulkhead/ Seawall | 051-011-000-001B-100 | Railroad Avenue            | 163      |
|           | Moderate  | Bulkhead/ Seawall | 051-030-000-009-100  | Water Street               | 27       |
|           | Moderate  | Revetment         | 051-030-000-013-200  | Simons Beach               | 60       |
|           | Moderate  | Bulkhead/ Seawall | 051-030-000-013-100  | Simons Beach               | 41       |
|           | Moderate  | Bulkhead/ Seawall | 051-011-000-002-100  | Gillis Bridge              | 54       |
|           | Moderate  | Bulkhead/ Seawall | 051-030-000-013-300  | Simons Beach               | 28       |
|           | Moderate  | Groin/ Jetty      | 051-054-000-003-400  | Cashman Park               | 7        |
|           |           | Bulkhead/Seawall  | 206-077-000-018-001  |                            | 60       |
|           |           | Revetment         | 206-077-000-015-001  |                            | 18       |
|           |           | Bulkhead/Seawall  | 206-077-000-011-001  |                            | 53       |
|           |           | Revetment         | 206-077-000-010-001  |                            | 25       |
|           |           | Bulkhead/Seawall  | 206-077-000-006-001  |                            | 39       |
|           |           | Bulkhead/Seawall  | 206-077-000-021-001  |                            | 55       |
| Private   | NA        | Revetment         | 206-076-000-085-001  |                            | 69       |
| Private   | INA       | Bulkhead/Seawall  | 206-076-000-052-001  |                            | 40       |
|           |           | Bulkhead/Seawall  | 206-076-000-036-001  |                            | 41       |
|           |           | Revetment         | 206-076-000-035-001  |                            | 25       |
|           |           | Bulkhead/Seawall  | 206-076-000-019-001  |                            | 27       |
|           |           | Revetment         | 206-076-000-018-001  |                            | 27       |
|           |           | Groin/Jetty       | 206-077-000-125-001  |                            | 24       |
|           |           |                   | 206-077-000-076-001  |                            | 54       |
| U         |           | •                 | Total                |                            | 2121     |

### Rowley

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of Essex. This project was conducted by the Ipswich River Watershed Association (IRWA) as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and the PIE-Rivers Region<sup>20</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. Here we provide detailed results from the prioritization of the four barrier types. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>21</sup>.

The entire Town of Rowley is located in the study region, covering an area of approximately 18.6 square miles. Rowley is one of seven municipalities with land within the coastal portion of the Great Marsh study region and three of the four structure types are present (Figure 23). Our analysis considered a total of 58 structures including 6 dams (Table 16), 43 non-tidal crossings (Table 17), and 9 tidal crossings (Table 18). This study did not identify any coastal stabilization structures in Rowley.

Rowley's highest priority dam, the Jewel Mill Dam on the Mill River, is tied for 2nd in priority rank regionally (Table 16). This structure is at the head of tide, is a significant hazard structure and may present an opportunity for removal or improved fish passage in the future. As of the writing of this report,



Figure 22. Outlet of non-tidal crossing at Independence Street in Rowley (Site #926)

conservation partners including the Nor East Chapter of Trout Unlimited and the Parker River Clean Water Association are investigating the habitat potential upstream of this dam for migratory river herring and other anadromous fishes. The dam is privately owned so any restoration effort would need to be done in cooperation with the owner. The other five dams in Rowley do not rank among the higher priority dams in the region. It is worth noting that the Ox Pasture Brook Dam (MA01603) is now the closest barrier to the ocean on Ox Pasture Brook following the removal of the former Lower Ox Pasture Brook Dam that was demolished in 2009 as part of an ecological restoration project.

We inventoried and prioritized a total of 43 non-tidal crossings in the Town of Rowley. The screening results identify several high priority crossings including five crossings that are among the 50 poorest scoring sites in the

<sup>&</sup>lt;sup>20</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>21</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

region based on combined ecological and infrastructure risk (Table 17). Poor scores in the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. The 11 poorest scoring crossings are single or multiple culverts that could likely be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance. Any crossing with infrastructure risk index (CRI) scores of higher than 4 is showing possible inability to pass flow from storms that have a 50% chance of occurring on any given year. While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms.

High priority tidal crossings were identified based on the combination of their association with a public road (public way), whether they were listed as priority sites in the Draft Great Marsh Coastal Wetlands Restoration Plan<sup>22</sup> and whether they had been identified as a priority by municipal other partners. Our evaluation identified one of the nine tidal crossings as high priority (Table 18). This crossing, located on Red Gate Road appears to restrict tidal exchange to a large section of salt marsh near the Newbury town line (Figure 23). This structure was also the subject of a Rapid Technical Assessment as part of the Great Marsh Plan. Our methodology for assessing tidal crossing structures was less quantitative than the ones we used to assess non-tidal crossings, but given increasing sea level and storm intensities any structure already subject to tidal exchange is at risk. We would suggest that this high priority structure is worth a closer, more rigorous analysis when possible.

As part of this study, Meridian Associates, Inc. (MAI) developed sketch conceptual sketch designs for the replacement of 6 non-tidal crossings with structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. These designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

Meridian design materials are located in Appendix 3

- Supporting materials begin on page 180
- Rowley designs begin on page 264

<sup>&</sup>lt;sup>22</sup> Developed by Massachusetts Office of Coastal Zone Management's Wetlands Restoration Program (WRP), (now part of the MA Division of Ecological Restoration) - 2006

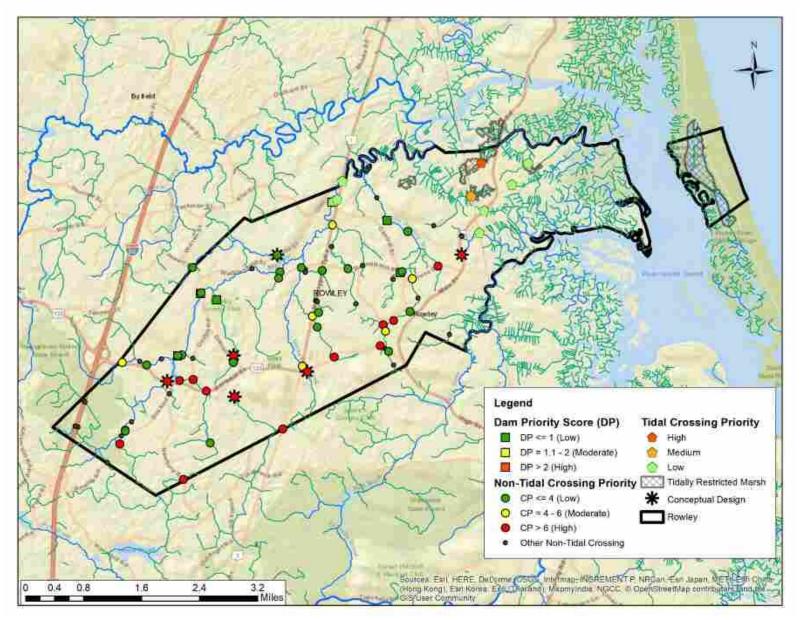



Figure 23. Map showing locations and prioritization scores for dams, non-tidal crossings and tidal restrictions for the Great Marsh Study region within the Town of Rowley, MA. Crossings with available conceptual designs and suspected tidally restricted marshes are also noted.

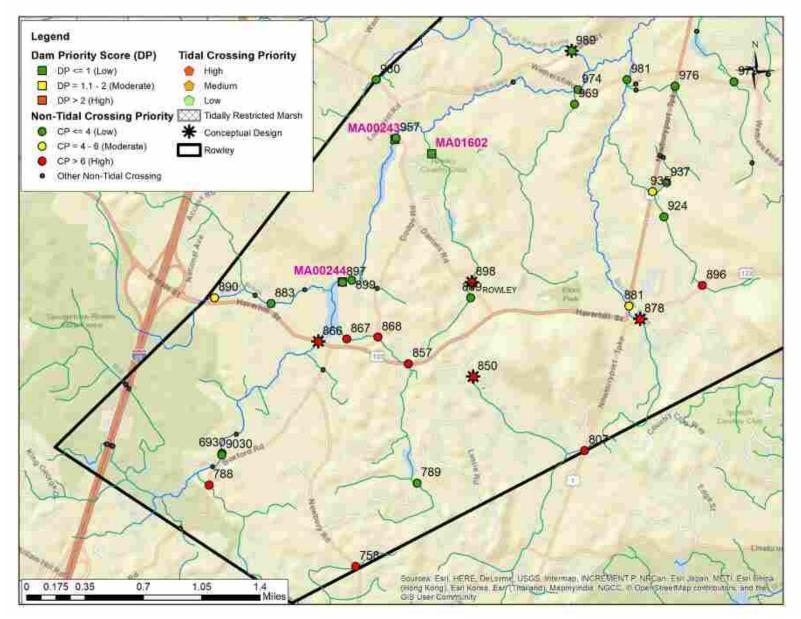



Figure 24. Prioritized structures in the Great Marsh Study region within the western portion of the Town of Rowley, MA. Dam ID shown in pink, non-tidal crossing ID shown in black and tidal crossing ID shown in green.

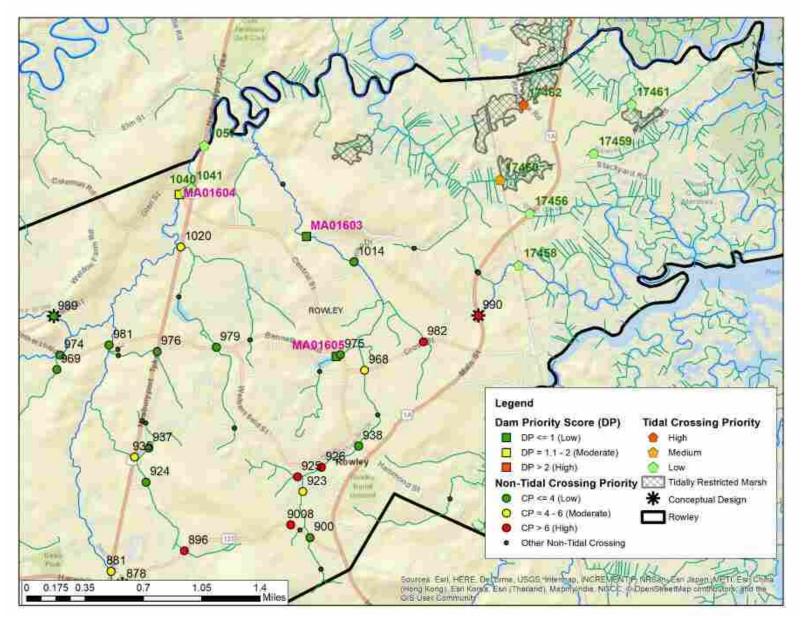



Figure 25. Prioritized structures in the Great Marsh Study region within the eastern portion of the Town of Rowley, MA. Dam ID shown in pink, non-tidal crossing ID shown in black and tidal crossing ID shown in green.

Table 16. Dams in the portion of the Great Marsh study region within the Town of Rowley, MA prioritized by Dam Priority Score (DP).

|         | Priority Rank |        |                       | Pri            | 5           | Active/    |          |
|---------|---------------|--------|-----------------------|----------------|-------------|------------|----------|
|         |               |        |                       | Infrastructure | Ecological  | Priority   | Priority |
| Dam ID  | Town          | Region | Dam Name              | Risk (RI)      | Impact (EI) | Score (DP) | Project  |
| MA01604 | 1             | 2      | Jewel Mill Dam        | 1              | 1           | 2          | Priority |
| MA00243 | 2             | 26     | Lower Millpond Dam    | 0.5            | 0.5         | 1          |          |
| MA01605 | 2             | 26     | Central Street Dam    | 0.5            | 0.5         | 1          |          |
| MA01603 | 4             | 30     | Ox Pasture Brook Dam  | 0              | 1           | 1          |          |
| MA01602 | 5             | 45     | Country Club Pond Dam | 0              | 0.5         | 0.5        |          |
| MA00244 | 6             | 54     | Upper Millpond Dam    | 0              | 0           | 0          |          |

|          | Priori | ty Rank |                      |                  | Prio           | rity Scoring | •        |         |
|----------|--------|---------|----------------------|------------------|----------------|--------------|----------|---------|
|          |        | -       |                      |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                      |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                 | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 990      | 1      | 14      | Main Street          | Single Culvert   | 3.6            | 4.7          | 8.3      | Yes     |
| 898      | 2      | 24      | Daniels Rd           | Single Culvert   | 5.0            | 2.5          | 7.5      | Yes     |
| 878      | 3      | 29      | Haverhill Street     | Single Culvert   | 5.0            | 2.1          | 7.1      | Yes     |
| 788      | 4      | 31      | Boxford Road         | Single Culvert   | 5.0            | 2.1          | 7.1      |         |
| 758      | 5      | 41      | Newbury Road         | Single Culvert   | 5.0            | 1.9          | 6.9      |         |
| 868      | 6      | 63      | Dodge Road           | Single Culvert   | 5.0            | 1.7          | 6.7      |         |
| 896      | 7      | 68      | Haverhill Street     | Single Culvert   | 5.0            | 1.6          | 6.6      |         |
| 850      | 8      | 80      | Kathleen Circle      | Single Culvert   | 4.0            | 2.5          | 6.5      | Yes     |
| 866      | 9      | 87      | Haverhill St         | Single Culvert   | 5.0            | 1.4          | 6.4      | Yes     |
| 867      | 10     | 89      | Haverhill            | Multiple Culvert | 5.0            | 1.4          | 6.4      |         |
| 9008     | 11     | 91      | Haverhill Street     | Single Culvert   | 5.0            | 1.4          | 6.4      |         |
|          |        |         |                      | Open Bottom      |                |              |          |         |
| 926      | 12     | 94      | Independence St      | Arch             | 4.6            | 1.8          | 6.4      |         |
| 982      | 13     | 100     | Cross St             | Single Culvert   | 5.0            | 1.3          | 6.3      |         |
| 857      | 14     | 108     | Haverhill St         | Single Culvert   | 5.0            | 1.3          | 6.3      |         |
| 807      | 15     | 127     | Turnpike Road        | Bridge           | 5.0            | 1.1          | 6.1      |         |
| 925      | 16     | 128     | Bradford Street      | Single Culvert   | 5.0            | 1.1          | 6.1      |         |
| 881      | 17     | 139     | Newburyport Turnpike | Single Culvert   | 4.0            | 1.9          | 5.9      |         |
| 1020     | 18     | 145     | Newburyport Turnpike | Single Culvert   | 5.0            | 0.8          | 5.8      |         |
| 923      | 19     | 173     | Summer Street        | Single Culvert   | 4.0            | 1.5          | 5.5      |         |
| 935      | 20     | 176     | Newburyport Turnpike | Single Culvert   | 4.0            | 1.5          | 5.5      |         |
| 968      | 21     | 223     | Cross St             | Bridge           | 4.0            | 0.3          | 4.3      |         |
| 890      | 22     | 225     | HaverhillSt          | Single Culvert   | 2.6            | 1.7          | 4.3      |         |
| 938      | 23     | 244     | Church St            | Single Culvert   | 1.6            | 1.9          | 3.5      |         |
| 6930     | 24     | 281     | Off_Boxford Road     | Multiple Culvert | 0.0            | 2.4          | 2.4      |         |
| 979      | 25     | 298     | Wethersfield Street  | Single Culvert   | 0.0            | 2.2          | 2.2      |         |
| 989      | 26     | 304     | Hillside Street      | Single Culvert   | 0.0            | 2.0          | 2.0      | Yes     |
| 897      | 27     | 315     | Mill Rd              | Single Culvert   | NA             | 1.9          | 1.9      |         |
| 980      | 28     | 331     | Weathersfield Road   | Culvert          | NA             | 1.8          | 1.8      |         |
| 969      | 29     | 346     | Taylors Lane         | Single Culvert   | NA             | 1.7          | 1.7      |         |

Table 17. Non-tidal crossings in the portion of the Great Marsh study region within the Town of Rowley, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted. (page 1 of 2)

Table 17. (Continued) Non-tidal crossings in the portion of the Great Marsh study region within the Town of Rowley, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted. (page 2 of 2)

|          | Priori | ty Rank |                      |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|----------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                      |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                      |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                 | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 924      | 30     | 357     | Victory Lane         | Single Culvert   | 0.0            | 1.6          | 1.6      |         |
| 883      | 31     | 375     | Haverhill St         | Single Culvert   | 0.0            | 1.5          | 1.5      |         |
| 975      | 32     | 377     | Central St           | Single Culvert   | NA             | 1.5          | 1.5      |         |
| 789      | 33     | 381     | Cindy Lane           | Multiple Culvert | 0.0            | 1.4          | 1.4      |         |
| 976      | 34     | 387     | Newburyport Turnpike | Single Culvert   | 0.0            | 1.4          | 1.4      |         |
| 974      | 35     | 408     | Wethersfield Street  | Bridge           | 0.0            | 1.3          | 1.3      |         |
| 900      | 36     | 444     | Haverhill Street     | Single Culvert   | 0.0            | 1.1          | 1.1      |         |
| 981      | 37     | 519     | Wethersfield Street  | Bridge           | 0.0            | 0.6          | 0.6      |         |
| 957      | 38     | 533     | Dodge St             | Bridge           | 0.0            | 0.5          | 0.5      |         |
| 937      | 39     | 534     | Turcotte Drive       | Multiple Culvert | 0.0            | 0.5          | 0.5      |         |
|          |        |         |                      | Open Bottom      |                |              |          |         |
| 889      | 40     | 538     | Powerhouse Lane      | Arch             | NA             | 0.5          | 0.5      |         |
| 9030     | 41     | 564     | Off_Boxford Road     | Bridge           | 0.0            | 0.3          | 0.3      |         |
| 1014     | 42     | 569     | Fenno Drive          | Bridge           | 0.0            | 0.3          | 0.3      |         |
| 899      | 43     | 592     | Mill Rd              | Bridge           | 0.0            | 0.1          | 0.1      |         |

Table 18. Prioritized tidal crossings in the portion of the Great Marsh study region within the Town of Rowley, MA. Sites with available conceptual designs and/or associated rapid technical assessments (RTA) from the Draft Great Marsh Coastal Wetlands Restoration Plan are noted.

|          |                                   |            |                     |          | Tidal    |           |
|----------|-----------------------------------|------------|---------------------|----------|----------|-----------|
| Crossing |                                   |            | <b>GMP</b> Priority | Local    | Crossing | Design or |
| ID       | Road/Site                         | Public Way | Marsh               | Priority | Priority | RTA       |
| 17462    | Red Gate Road                     | Yes        | Medium              |          | High     | RTA       |
| 17460    | МВТА                              | Yes        | Low                 |          | Medium   |           |
| 1040     | Glen Street                       | Yes        | NIP                 |          | Low      |           |
| 1041     | Fullingmill Road                  | Yes        | NIP                 |          | Low      |           |
| 1057     | Newburyport Turnpike (Mill River) | Yes        | NIP                 |          | Low      |           |
| 17456    | Route 1A (West Creek)             | Yes        | NIP                 |          | Low      |           |
| 17458    | MBTA (Sand Creek)                 | Yes        | NIP                 |          | Low      |           |
| 17459    | Patmos Road                       | Yes        | NIP                 |          | Low      |           |
| 17461    | North of Patmos Road              | No         | Low                 |          | Low      |           |

### Salisbury

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of Salisbury. This project was conducted by the Ipswich River Watershed Association (IRWA) as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and the PIE-Rivers Region<sup>23</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied



Figure 26. Outlet of non-tidal crossing at Elmwood Street in Salisbury (Site #10109)

screening tools and local knowledge. Here we provide detailed results from the prioritization of the four barrier types. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>24</sup>.

The entire town of Salisbury is located in the study region, covering an area of approximately 16.0 square miles. Salisbury is one of seven municipalities with land within the coastal portion of the Great Marsh study region and three of four structure types are present (Figure 28). Our analysis considered a total of 36 structures including 12 non-tidal crossings (Table 19), 15 tidal crossings (Table 20), and 9 coastal stabilization structures (Table 21). This study did not identify and dams in Salisbury.

We inventoried and prioritized a total of 12 non-tidal

crossings in the Town of Salisbury (Table 19). Poor scores in the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (Ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. None of the crossings in Salisbury are among the higher priority sites in the region, but there are a number of single culverts that could likely be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance. In all, the non-tidal crossings in Salisbury appear to be of less overall concern than the tidal crossings.

Our evaluation categorized 12 of the 15 tidal crossings in Salisbury as high priority (Table 20). High priority tidal crossings were identified based on the combination of their association with a public road (public way), whether they were listed as priority sites in the Draft Great Marsh Coastal Wetlands Restoration Plan<sup>25</sup> and whether they had been identified as a priority by municipal other partners. Our methodology for assessing tidal crossing

<sup>&</sup>lt;sup>23</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>24</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

<sup>&</sup>lt;sup>25</sup> Developed by Massachusetts Office of Coastal Zone Management's Wetlands Restoration Program (WRP), (now part of the MA Division of Ecological Restoration) - 2006

structures was less quantitative than the ones we used to assess non-tidal crossings, but given increasing sea level and storm intensities any structure already subject to tidal exchange is at risk. We would suggest that all structures that we have identified as high priority are worth a closer, more rigorous analysis where and when possible.

There are 9 coastal stabilization structures identified in the Town of Salisbury of which 7 are public and 2 are private structures (Table 21). Of the publicly owned structures, 6 are rated as low priority and 1 is rated as a moderate priority in our screening. There is a total of more than one kilometer of hardened shoreline in Salisbury with the heaviest concentration being along the mouth of the Merrimack River at the Salisbury Beach State Reservation (Figure 28).

As part of this study, Meridian Associates, Inc. (MAI) developed sketch conceptual sketch designs for the replacement of 5 crossings (3 non-tidal and 2 tidal) with structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their



Figure 27. Outlet of tidal crossing on Town Creek at Route 1 in Salisbury (Site #10107)

numeric priority scores, municipal input, structural condition and proximity to other priority structures. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. These designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

Meridian design materials are located in Appendix 3

- Supporting materials begin on page 180
- Salisbury designs begin on page 271

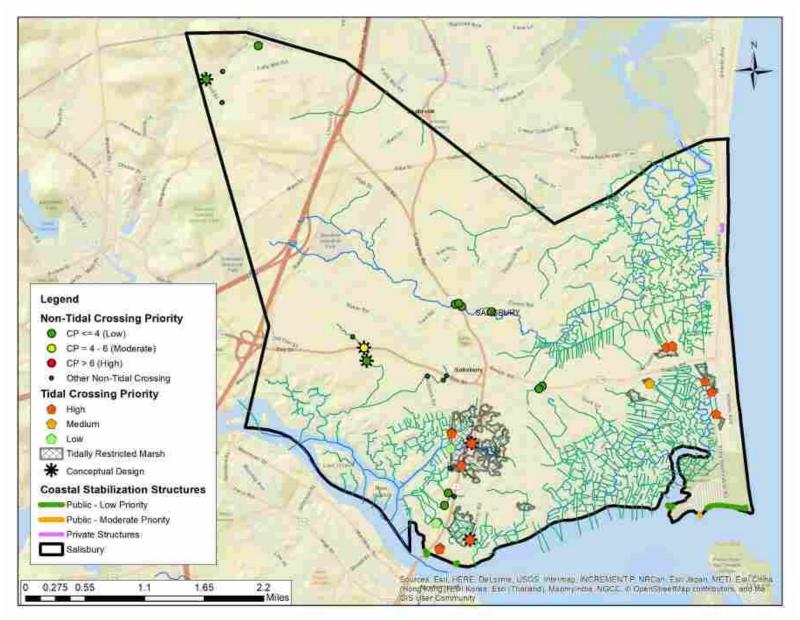



Figure 28. Map showing locations and prioritization scores for dams, non-tidal crossings, tidal restrictions and coastal stabilization structures for the Great Marsh Study region within the Town of Salisbury, MA. Crossings with available conceptual designs and suspected tidally restricted marshes are also noted.



Figure 29. Prioritized structures in the Great Marsh Study region within the northern portion of the Town of Salisbury, MA. Non-tidal crossing ID shown in black and tidal crossing ID shown in maroon.

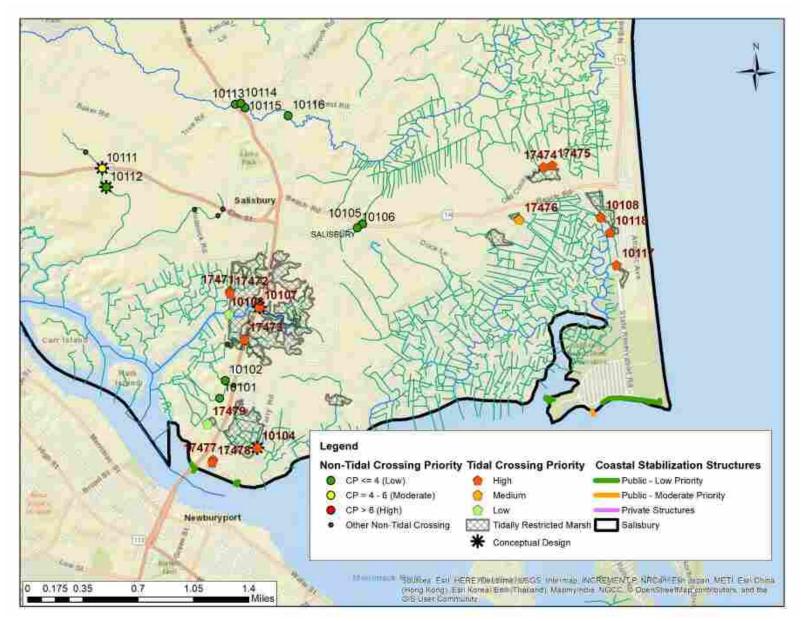



Figure 30. Prioritized structures in the Great Marsh Study region within the southern portion of the Town of Salisbury, MA. Non-tidal crossing ID shown in black and tidal crossing ID shown in maroon.

|          | Priori | ty Rank |                       |                  | Prio           | rity Scoring | -        |         |
|----------|--------|---------|-----------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                       |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                       |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                  | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 10111    | 1      | 237     | Route 110             | Culvert          | NA             | 4.1          | 4.1      | Yes     |
| 10109    | 2      | 241     | Elmwood Street        | Culvert          | 0.0            | 3.9          | 3.9      | Yes     |
| 10112    | 3      | 250     | unnamed               | Culvert          | NA             | 3.4          | 3.4      | Yes     |
| 10116    | 4      | 251     | Forest Road           | Multiple Culvert | 2.2            | 1.1          | 3.3      |         |
| 10110    | 5      | 366     | Black Snake Road      | Culvert          | NA             | 1.6          | 1.6      |         |
| 10106    | 6      | 412     | Beach Road            | Culvert          | NA             | 1.3          | 1.3      |         |
| 10102    | 7      | 468     | bike path             | Culvert          | 0.0            | 0.9          | 0.9      |         |
| 10105    | 8      | 499     | Beach Road            | Culvert          | NA             | 0.7          | 0.7      |         |
| 10113    | 9      | 513     | Lafayette Road (Rt 1) | Bridge           | 0.0            | 0.6          | 0.6      |         |
| 10115    | 10     | 526     | Gerrish Road          | Bridge           | NA             | 0.6          | 0.6      |         |
| 10101    | 11     | 553     | Steven                | Bridge           | 0.0            | 0.4          | 0.4      |         |
| 10114    | 12     | 579     | unnamed               | Bridge           | 0.0            | 0.2          | 0.2      |         |

Table 19. Non-tidal crossings in the portion of the Great Marsh study region within the Town of Salisbury, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted.

Table 20. Prioritized tidal crossings in the portion of the Great Marsh study region within the Town of Salisbury, MA. Sites with available conceptual designs and/or associated rapid technical assessments (RTA) from the Draft Great Marsh Coastal Wetlands Restoration Plan are noted.

|          |                         |            |                     | Tidal    |                |
|----------|-------------------------|------------|---------------------|----------|----------------|
| Crossing |                         |            | <b>GMP</b> Priority | Crossing | Design or      |
| ID       | Road/Site               | Public Way | Marsh               | Priority | RTA            |
| 10104    | Ferry Road              | Yes        | High                | High     | Design,<br>RTA |
| 10107    | Route 1 (Town Creek)    | Yes        | High                | High     | Design         |
| 10108    | State Reservation Road  | Yes        | Medium              | High     | RTA            |
| 10117    | State Reservation Road  | Yes        | Medium              | High     |                |
| 10118    | State Reservation Road  | Yes        | Medium              | High     | RTA            |
| 17471    | Rail Trail              | No         | High                | High     |                |
| 17472    | Rail Trail              | No         | High                | High     |                |
| 17473    | Route 1                 | Yes        | High                | High     |                |
| 17474    | Old County Road         | Yes        | Medium              | High     | RTA            |
| 17475    | Old County Road         | Yes        | Medium              | High     | RTA            |
| 17477    | March Road              | Yes        | High                | High     | RTA            |
| 17478    | 1st Street              | Yes        | High                | High     | RTA            |
| 17476    | East of Hayes Street    | No         | Medium              | Medium   | RTA            |
| 10103    | Rail Trail (Town Creek) | No         | Other_AB            | Low      |                |
| 17479    | Rail Trail              | No         | Low                 | Low      |                |

Table 21. Man-made coastal stabilization structures in the portion of the Great Marsh study region within the Town of Salisbury, MA.

| Structure | Structure |                   |                     |                 | Length   |  |
|-----------|-----------|-------------------|---------------------|-----------------|----------|--|
| Category  | Priority  | Structure Type    | Structure ID        | Location Note   | (meters) |  |
|           | Low       | Groin/ Jetty      | 065-007-000-015-200 | Gillis Bridge   | 38       |  |
|           | Low       | Bulkhead/ Seawall | 065-007-000-010-100 | First Street    | 77       |  |
|           | Low       | Groin/ Jetty      | 065-030-000-001-400 | State Park      | 12       |  |
| Public    | Low       | Bulkhead/ Seawall | 065-030-000-001-300 | State Park      | 628      |  |
|           | Low       | Revetment         | 065-030-000-001-100 | Merrimack River | 159      |  |
|           | Low       | Revetment         | 065-007-000-015-100 | Gillis Bridge   | 64       |  |
|           | Moderate  | Groin/ Jetty      | 065-030-000-001-200 | State Park      | 39       |  |
| Private   | NA        | Revetment         | 259-035-000-224-001 |                 | 21       |  |
| Filvale   | INA       | Bulkhead/Seawall  | 259-035-000-234-001 |                 | 20       |  |
| Total     |           |                   |                     |                 |          |  |

## Appendix 2 - Inland Municipality Summary Reports

This appendix contains town-specific summary reports for the inland municipalities in the Great Marsh study region. There are 22 municipalities that fall all or completely within the study region and are outside of the coastal zone (i.e. outside of tidal influence). These municipalities are categorized as inland municipalities in our analysis and, by definition, cannot contain any tidal crossings or coastal stabilization structures.

All 22 municipalities are listed in Table 22 and summary reports for 15 towns follow in alphabetical order. We did not produce summary reports for municipalities where we assessed fewer than 10 structures unless a conceptual design was developed for one of the structures.

Table 22. Alphabetical list of inland municipalities in the Great Marsh study region showing the total number of each barrier type located within the surveyed portions of each municipality. The area column represents the land area of the municipality that falls within the study region.

|               | Area           | Non-Tidal |      | Structures | Report in |
|---------------|----------------|-----------|------|------------|-----------|
| Town          | (square miles) | Crossings | Dams | Designed   | Appendix  |
| Andover       | 5.4            | 20        | 7    | 5          | Yes       |
| Beverly       | 3.7            | 10        | 1    |            | Yes       |
| Billerica     | 0.6            | 1         |      |            | No        |
| Boxford       | 21.2           | 102       | 11   | 15         | Yes       |
| Burlington    | 3.5            | 3         | 3    |            | No        |
| Danvers       | 3.9            | 15        | 3    |            | Yes       |
| Georgetown    | 12.9           | 43        | 1    | 4          | Yes       |
| Groveland     | 3.4            | 5         |      |            | No        |
| Hamilton      | 14.4           | 34        |      | 3          | Yes       |
| Lynnfield     | 3.4            | 2         | 1    |            | No        |
| Manchester    | 0.4            |           |      |            | No        |
| Middleton     | 14.5           | 35        | 10   | 3          | Yes       |
| North Andover | 16.6           | 59        | 7    | 10         | Yes       |
| North Reading | 13.5           | 33        | 2    |            | Yes       |
| Peabody       | 4.6            | 21        | 6    |            | Yes       |
| Reading       | 4.8            | 4         |      | 1          | Yes       |
| Tewksbury     | 0.5            |           |      |            | No        |
| Topsfield     | 12.8           | 57        | 11   | 14         | Yes       |
| Wenham        | 7.4            | 29        | 1    | 3          | Yes       |
| West Newbury  | 3.6            | 7         |      | 2          | Yes       |
| Wilmington    | 14.2           | 35        |      | 11         | Yes       |
| Woburn        | 0.1            | 1         |      |            | No        |

# Table of Contents (Appendix 2)

| . 94 |
|------|
| . 99 |
| 103  |
| 113  |
| 117  |
| 124  |
| 129  |
| 136  |
| 144  |
| 148  |
| 152  |
| 156  |
| 164  |
| 170  |
| 174  |
|      |

### Andover

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of Andover. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>26</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>27</sup>.

Approximately 5.4 square miles of the Town of Andover is located within the Great Marsh study region. This portion of the study watershed, located in the southeastern portion of Andover, is outside of the coastal zone (Figure 32). As an inland municipality, Andover does not have any tidal crossings or coastal stabilization structures. Our analysis considered a total of 27 potential barrier sites with structures confirmed and prioritized at 23 of those locations including 7 dams (Table 23) and 16 non-tidal crossings (Table 24).



Figure 31. Outlet of road-stream crossing at Gray Road in Andover (Site #421)

None of the dams stood out as particularly high priority for combined risk and ecological impact with a four-way tie for first between Brackett Pond Dam, Field Pond Dam, Collins Pond Dam and Field Pond Dike–all located in close proximity to one another within the Harold Parker State Forest. These dams ranked 22nd in the region.

We inventoried and prioritized 16 non-tidal crossings in the Town of Andover. The screening results identify two crossings that were among the 10 highest priority crossings region-wide (Table 24). Poor scores in the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (Ecological impact). Very often these

dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. The seven highest priority sites all had infrastructure risk (CRI) scores of 4 or greater indicating that they were not expected to pass flows associated with storms that have a 10% or higher chance of occurring on any given year. While this doesn't indicate they will fail, it is an indicator that

<sup>&</sup>lt;sup>26</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>27</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

those crossings might be worth taking a closer look at to see how they are performing during storms. All seven of these crossings were single culverts that could likely be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance.

As part of this study, Meridian Associates, Inc. (MAI) developed conceptual design plans for the replacement of 5 high priority non-tidal crossings with structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures<sup>28</sup>. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. These designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

Meridian design materials are located in Appendix 3

- Supporting materials begin on page 180
- Andover designs begin on page 191

<sup>&</sup>lt;sup>28</sup> Sites #260 (Mohawk Road) and #374 (Salem Street) were identified as high priority crossings for infrastructure risk in the preliminary results used to choose sites for design and were later significantly downgraded in priority during a quality control review of the model results. We have included designs here and believe both sites are good candidates for replacement based on ecological impact and best professional judgement.

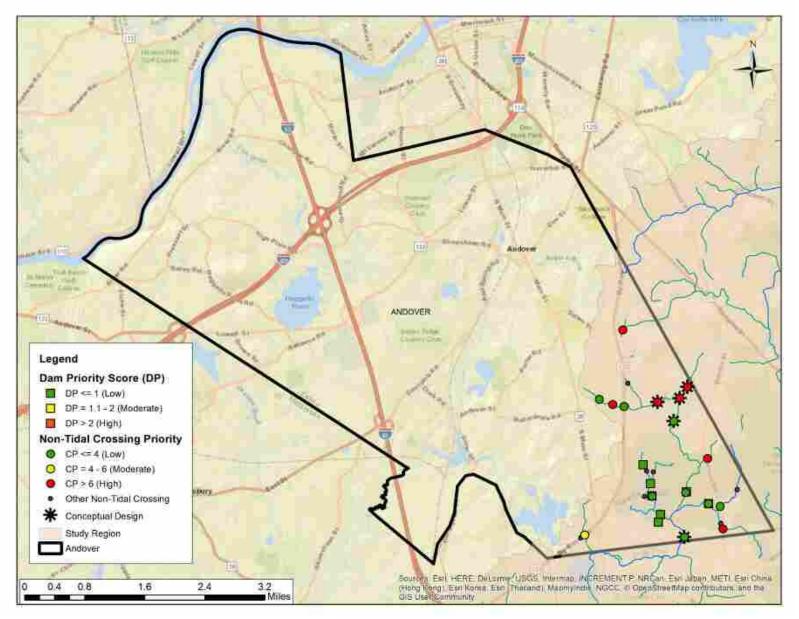



Figure 32. Map showing locations and prioritization scores for dams and non-tidal crossings in the Great Marsh Study region within the Town of Andover, MA. Crossings with available conceptual designs are also noted.

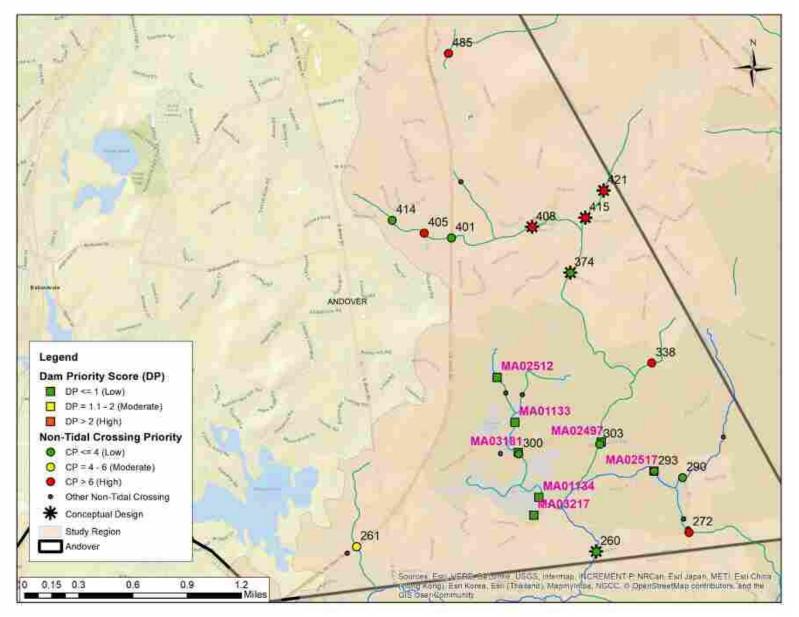



Figure 33. Closeup view of prioritized dams and non-tidal crossings in the Great Marsh Study region within Town of Andover. Dam ID shown in pink and crossing ID shown in black.

Table 23. Dams in the portion of the Great Marsh study region within the Town of Andover, MA prioritized by Dam Priority Score (DP).

|         | Priority Rank |        |                   | Pri            | Priority Scoring |            |          |
|---------|---------------|--------|-------------------|----------------|------------------|------------|----------|
|         |               |        |                   | Infrastructure | Ecological       | Priority   | Priority |
| Dam ID  | Town          | Region | Dam Name          | Risk (RI)      | Impact (EI)      | Score (DP) | Project  |
| MA01133 | 1             | 21     | Brackett Pond Dam | 1              | 0                | 1          |          |
| MA01134 | 1             | 21     | Field Pond Dam    | 1              | 0                | 1          |          |
| MA03181 | 1             | 21     | Collins Pond Dam  | 1              | 0                | 1          |          |
| MA03217 | 1             | 21     | Field Pond Dike   | 1              | 0                | 1          |          |
| MA02512 | 5             | 40     | Deleano Pond Dam  | 0.5            | 0                | 0.5        |          |
| MA02517 | 5             | 40     | Frye Pond Dam     | 0.5            | 0                | 0.5        |          |
| MA02497 | 7             | 54     | Skug River Dam    | 0              | 0                | 0          |          |

Table 24. Non-tidal crossings in the portion of the Great Marsh study region within the Town of Andover, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted.

|          | Priority Rank |        |                    |                  | Prio           | rity Scoring | -        |         |
|----------|---------------|--------|--------------------|------------------|----------------|--------------|----------|---------|
|          |               |        |                    |                  |                | Ecological   | Crossing |         |
| Crossing |               |        |                    |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town          | Region | Road               | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 421      | 1             | 8      | Gray Road          | Single Culvert   | 4              | 4.6          | 8.6      | Yes     |
| 408      | 2             | 9      | Salem Street       | Single Culvert   | 4              | 4.6          | 8.6      | Yes     |
| 415      | 3             | 56     | Korinthian Way     | Single Culvert   | 5              | 1.7          | 6.7      | Yes     |
| 272      | 4             | 65     | Jenkins Road       | Single Culvert   | 5              | 1.6          | 6.6      |         |
| 485      | 5             | 85     | Prospect Road      | Single Culvert   | 5              | 1.5          | 6.5      |         |
| 338      | 6             | 104    | Jenkins Road       | Single Culvert   | 4.6            | 1.7          | 6.3      |         |
| 405      | 7             | 117    | lvy Lane           | Single Culvert   | 4              | 2.2          | 6.2      |         |
|          |               |        | Route 125/Andover  |                  |                |              |          |         |
| 261      | 8             | 230    | Bypass             | Single Culvert   | 2.6            | 1.6          | 4.2      |         |
| 414      | 9             | 258    | Holt Road          | Multiple Culvert | 0.6            | 2.4          | 3.0      |         |
| 300      | 10            | 279    | Harold Parker Road | Single Culvert   | NA             | 2.4          | 0.0      |         |
| 260      | 11            | 355    | Mohawk Road        | Multiple Culvert | 0              | 1.6          | 1.6      | Yes     |
| 290      | 12            | 359    | Jenkins Road       | Single Culvert   | NA             | 1.6          | 0.0      |         |
|          |               |        | Harold Parker      |                  |                |              |          |         |
| 293      | 13            | 397    | Campground Road    | Single Culvert   | NA             | 1.3          | 0.0      |         |
| 374      | 14            | 413    | Salem Street       | Multiple Culvert | 0              | 1.3          | 1.3      | Yes     |
| 401      | 15            | 417    | Andover Bypass     | Single Culvert   | NA             | 1.2          | 0.0      |         |
| 303      | 16            | 551    | Harold Parker Road | Bridge           | 0              | 0.4          | 0.4      |         |

### Beverly

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the City of Beverly. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>29</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>30</sup>.

Approximately 3.7 square miles of the City of Beverly is located within the Great Marsh study region. This portion of the study watershed, located in the northern portion of Beverly, is outside of the coastal zone so Beverly is considered an inland municipality in our analysis (Figure 34). As an inland municipality, Beverly does not have any tidal crossings or coastal stabilization structures. Our analysis considered a total of 11 potential barrier sites with structures confirmed and prioritized at 9 of those locations including 1 dam (Table 25) and 8 non-tidal crossings (Table 26).

The Norwood Pond Dam (MA00181) is the only dam we identified in the City of Beverly. This dam is located in the headwaters of the Miles River. The MA Office of Dam Safety (ODS) database lists this dam as a significant hazard structure, which would have ranked it as a high priority. The City of Beverly has informed us that they were told by ODS that the dam is classified as a non-jurisdictional structure due to its small size (<6 feet tall)<sup>31</sup>. We have adjusted the data set accordingly and the Norwood Pond Dam now ranks as a low priority structure (tied for 45<sup>th</sup> in the region) in our analysis (Table 25). While this dam is not ranked as a high priory, it is still important that they be properly monitored and maintained. If dam structures are no longer needed, removal may be considered as an option to remove risk and enhance ecological integrity.

Of the 8 non-tidal crossings inventoried and prioritized based on combined ecological and infrastructure risk, the highest priority crossing ranked 50<sup>th</sup> across the entire study region (Table 26). Poor scores in the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. While none of the crossings in Beverly stood out on a region-wide scale, most of them appear to present considerable infrastructure risk. The five highest priority sites all had infrastructure risk (CRI) scores of 4 or greater indicating that they were not expected to pass flows associated with storms that have a 10% or higher chance of occurring on any given year. While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms. Four of the five high CRI crossings were single or multiple culverts that could likely be

<sup>&</sup>lt;sup>29</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>30</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

<sup>&</sup>lt;sup>31</sup> Michael P. Collins, Commissioner of Public Services and Engineering, email communication, 12/27/2017

replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance.

We did not develop conceptual designs for upgrade of any crossings located in the City of Beverly.

Table 25. Dams in the portion of the Great Marsh study region within the City of Beverly, MA prioritized by Dam Priority Score (DP).

|         | Priority Rank |        |                  | Priority Scorin |             | 5          | Active/  |
|---------|---------------|--------|------------------|-----------------|-------------|------------|----------|
|         |               |        |                  | Infrastructure  | Ecological  | Priority   | Priority |
| Dam ID  | Town          | Region | Dam Name         | Risk (RI)       | Impact (EI) | Score (DP) | Project  |
| MA00181 | 1             | 45     | Norwood Pond Dam | 0               | 0.5         | 0.5        |          |

Table 26. Non-tidal crossings in the portion of the Great Marsh study region within the City of Beverly, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted.

|          | Priority Rank |        | Priority Rank      |                  | Prio           |            |          |         |
|----------|---------------|--------|--------------------|------------------|----------------|------------|----------|---------|
|          |               |        |                    |                  |                | Ecological | Crossing |         |
| Crossing |               |        |                    |                  | Infrastructure | Impact     | Priority | Concept |
| ID       | Town          | Region | Road               | Structure Type   | Risk (CRI)     | (CEI)      | (CP)     | Designs |
| 153      | 1             | 50     | Landers Drive      | Multiple Culvert | 5.0            | 1.8        | 6.8      |         |
| 176      | 2             | 78     | Grover Road        | Culvert          | 5.0            | 1.5        | 6.5      |         |
| 181      | 3             | 142    | Dodge Street       | Single Culvert   | 4.6            | 1.3        | 5.9      |         |
|          |               |        |                    | Open Bottom      |                |            |          |         |
| 149      | 4             | 193    | Essex Street       | Arch             | 4.0            | 1.2        | 5.2      |         |
| 136      | 5             | 209    | Beaver Pond Road   | Single Culvert   | 4.0            | 0.8        | 4.8      |         |
|          |               |        |                    | Open Bottom      |                |            |          |         |
| 165      | 6             | 441    | Dodge St           | Arch             | 0.0            | 1.1        | 1.1      |         |
|          |               |        |                    | Open Bottom      |                |            |          |         |
| 175      | 7             | 549    | Morgan's Island Rd | Arch             | 0.0            | 0.4        | 0.4      |         |
| 155      | 8             | 552    | Fern Street        | Multiple Culvert | 0.0            | 0.4        | 0.4      |         |

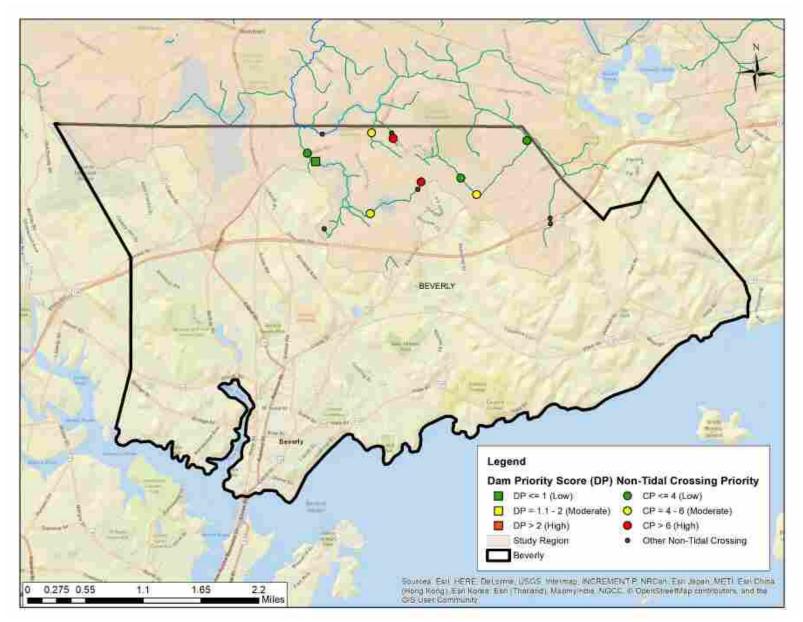



Figure 34. Map showing locations and prioritization scores for dams and non-tidal crossings in the Great Marsh Study region within the City of Beverly, MA.

Great Marsh Barriers Assessment

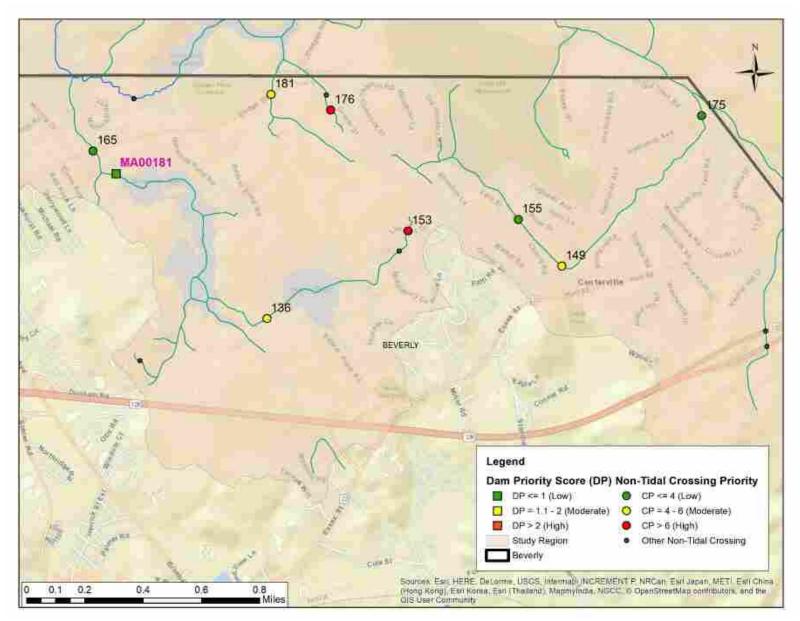



Figure 35. Closeup view of prioritized dams and non-tidal crossings in the Great Marsh Study region within the City of Beverly, MA. Dam ID shown in pink and crossing ID shown in black.

### Boxford

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of Boxford. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>32</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>33</sup>.



Figure 36. Howe Pond Dam, Boxford (MA00159)

The Town of Boxford is the municipality with the largest land area (21.2 square miles) and containing the most structures in the Barriers Assessment. All but the northern tip of Boxford is within the study region and the town is outside of the coastal zone (Figure 38). As an inland municipality, Boxford does not have any tidal crossings or coastal stabilization structures. Our analysis considered a total of 113 potential barrier sites with structures confirmed and prioritized at 92 of those locations including 10 dams (Table 27) and 82 non-tidal crossings (Table 28).

Three dams ranked among the 10 highest priority dams in the region with the Howe Pond Dam (MA00159) on Fish Brook tied for 2<sup>nd</sup> in ranking based on a combination of risk and ecological impact (Table 27). Fish Brook and its tributaries have been

the focus of recent restoration efforts by Trout Unlimited, the Town of Boxford, Ipswich River Watershed Association and partners based on its potential as cold water and fluvial (flowing) habitat. To maximize the potential ecological benefit of any efforts to improve connectivity at the Howe Pond Dam, it would be beneficial to explore options to remove or improve passage at Lockwood Dam 1 (MA01525) located downstream. The Baldpate Pond Dam (MA01198) and Stiles Pond Outlet Dam (MA00158) are also among the highest priority dams in the region ranking tied for 5<sup>th</sup> and 9<sup>th</sup>, respectively.

We inventoried and prioritized 82 non-tidal crossings in the Town of Boxford based on combined ecological and infrastructure risk. The screening results identified seven crossings that were among the 50 highest priority crossings region-wide (Table 28). Poor scores in the screening tool generally indicate that structures are less

<sup>&</sup>lt;sup>32</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>33</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. More than one quarter (22) of the sites scored including 8 of the 10 highest priority sites had infrastructure risk

(CRI) scores of 4 or greater. This indicates that they were not expected to pass flows associated with storms that have a 10% or higher chance of occurring on any given year. While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms. The vast majority of the crossings in Boxford were single or multiple culverts that could likely be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance.

The Nor'East Chapter of Trout Unlimited has been working closely with the Town of Boxford and other partners to restore aquatic connectivity in Crooked Pond Brook, a tributary to Fish Brook, to increase habitat quality for river



Figure 37. Outlet of road-stream crossing at Main Street, Boxford (Site #859)

dependent fish including brook trout. This included a culvert upgrade on a crossing near Lockwood Lane in 2013<sup>34</sup>. The Town, with support from Trout Unlimited, is currently planning to replace the next culvert upstream at the brook's crossing under Middleton Road (Site #484). This site ranks as a high priority in the screening analysis and the upgraded crossing will significantly improve habitat connectivity in Crooked Pond Brook.

As part of this study, Meridian Associates, Inc. (MAI) developed conceptual design plans for the replacement of 15 high priority non-tidal crossings with structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures<sup>35</sup>. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. These designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

<sup>&</sup>lt;sup>34</sup> <u>https://www.ipswichriver.org/projects-2/crooked-pond-brook/</u>

<sup>&</sup>lt;sup>35</sup> A crossing on Baldpate Road (Site #814) was chosen for design based on its ecological score. Site #720 (Main Street) was selected based on ecological score and best professional judgment as it is located along a migration path from Fish Brook to Stiles Pond. The crossings designed on Middleton Road (Site #511) and Pye Brook Lane (Site #679) were identified as high priority for infrastructure risk in the preliminary results used to choose crossings for design and were later significantly downgraded in priority during a quality control review of the model results.

Meridian design materials are located in Appendix 3

- Supporting materials begin on page 180
- Boxford designs begin on page 197

Table 27. Dams in the portion of the Great Marsh study region within the Town of Boxford, MA prioritized by Dam Priority Score (DP).

|         | Priority Rank |        |                          | Priority Scoring |             |            | Active/  |
|---------|---------------|--------|--------------------------|------------------|-------------|------------|----------|
|         |               |        |                          | Infrastructure   | Ecological  | Priority   | Priority |
| Dam ID  | Town          | Region | Dam Name                 | Risk (RI)        | Impact (EI) | Score (DP) | Project  |
| MA00159 | 1             | 2      | Howe Pond Dam            | 1                | 1           | 2          |          |
| MA01198 | 2             | 5      | Baldpate Pond Dam        | 0.5              | 1.5         | 2          |          |
| MA00158 | 3             | 9      | Stiles Pond Outlet Dam   | 1                | 0.5         | 1.5        |          |
| MA00160 | 4             | 12     | Lowe Pond Outlet Dam     | 0.5              | 1           | 1.5        |          |
| MA01202 | 4             | 12     | Towne Pond Dam           | 0.5              | 1           | 1.5        |          |
| MA01525 | 6             | 30     | Lockwood Dam 1           | 0                | 1           | 1          |          |
| MA01201 | 7             | 40     | Fourmile Pond Dam        | 0.5              | 0           | 0.5        |          |
| MA01199 | 8             | 45     | Lockwood Dam 3           | 0                | 0.5         | 0.5        |          |
| MA03227 | 8             | 45     | Spofford Pond Outlet Dam | 0                | 0.5         | 0.5        |          |
| MA03229 | 8             | 45     | Fish Brook Dam           | 0                | 0.5         | 0.5        |          |

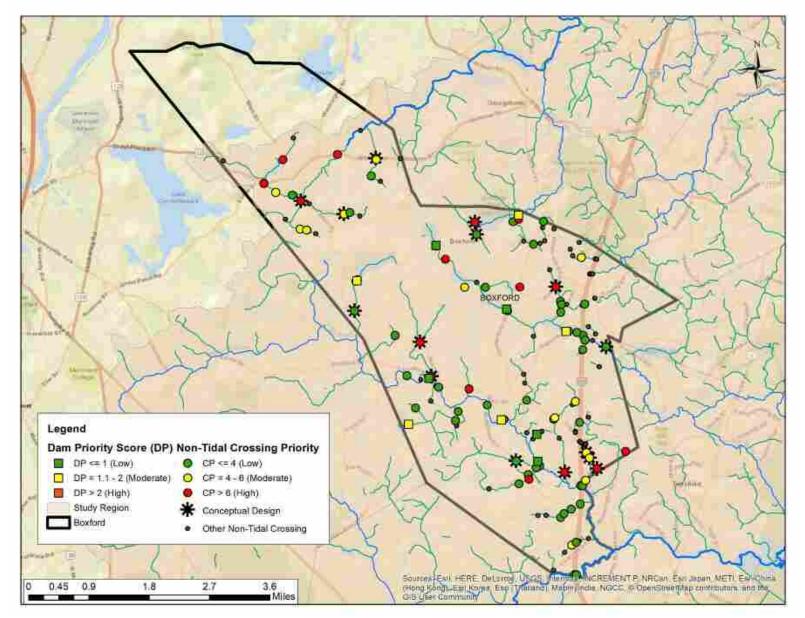



Figure 38. Map showing locations and prioritization scores for dams and non-tidal crossings in the Great Marsh Study region within the Town of Boxford, MA. Crossings with available conceptual designs are also noted.

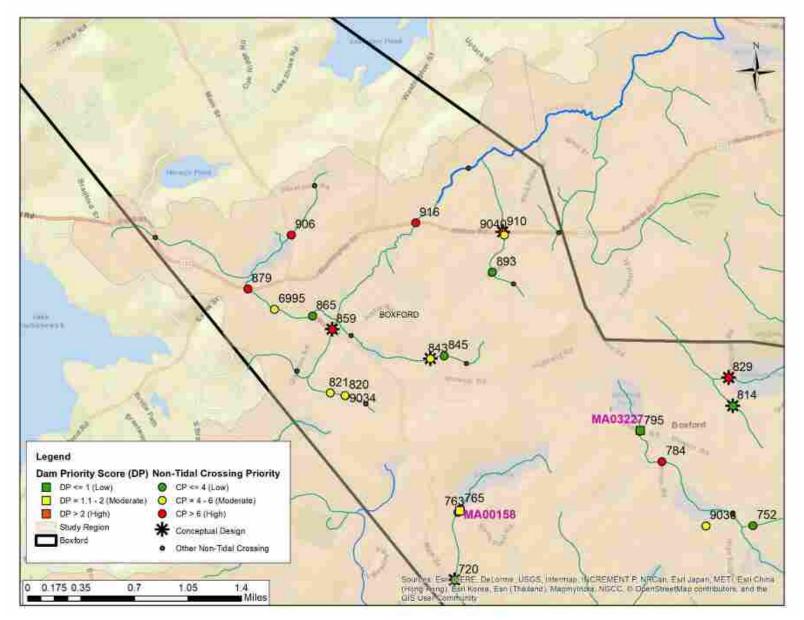



Figure 39. Prioritized dams and non-tidal crossings in the Great Marsh Study region within the northern portion of the Town of Boxford, MA. Dam ID shown in pink and crossing ID shown in black.

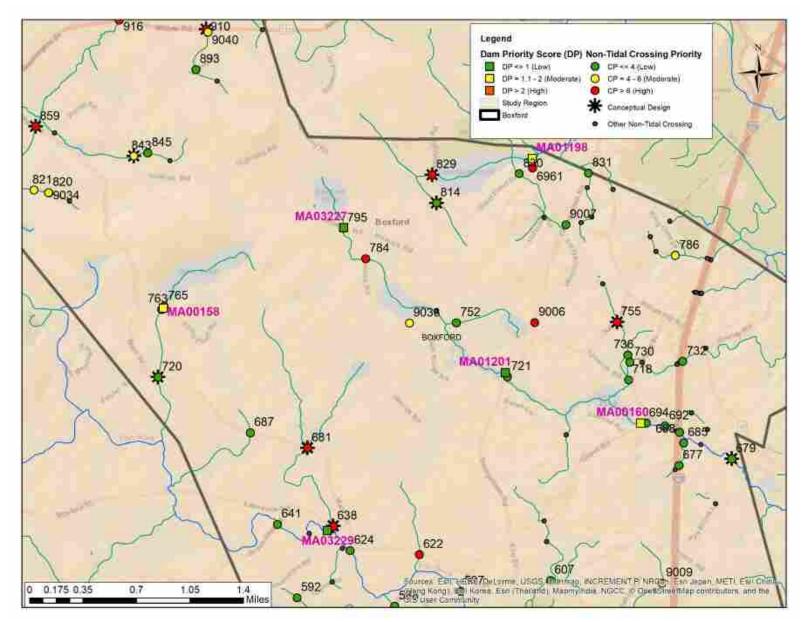



Figure 40. Prioritized dams and non-tidal crossings in the Great Marsh Study region within the central portion of the Town of Boxford, MA. Dam ID shown in pink and crossing ID shown in black.

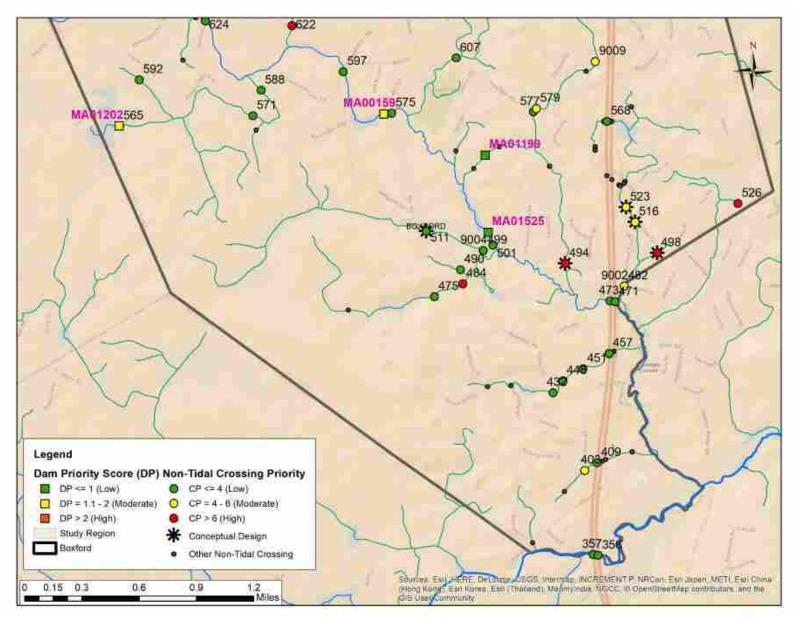



Figure 41. Prioritized dams and non-tidal crossings in the Great Marsh Study region within the southern portion of the Town of Boxford, MA. Dam ID shown in pink and crossing ID shown in black.

|          | Priori | ty Rank |                      |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|----------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                      |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                      |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                 | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 879      | 1      | 7       | Washington Street    | Single Culvert   | 5.0            | 3.7          | 8.7      |         |
| 859      | 2      | 13      | Main Street          | Multiple Culvert | 5.0            | 3.3          | 8.3      | Yes     |
| 681      | 3      | 17      | Main Street          | Single Culvert   | 3.0            | 4.8          | 7.8      | Yes     |
| 755      | 4      | 18      | Kelsey Road          | Single Culvert   | 5.0            | 2.7          | 7.7      | Yes     |
| 765      | 5      | 23      | Off Styles Pond Road | Single Culvert   | 2.6            | 5.0          | 7.6      |         |
| 484      | 6      | 35      | Middleton Road       | Single Culvert   | 4.0            | 3.0          | 7.0      |         |
| 9006     | 7      | 36      | Georgetown Road      | Single Culvert   | 5.0            | 2.0          | 7.0      |         |
| 906      | 8      | 52      | Main Street          | Single Culvert   | 4.6            | 2.1          | 6.7      |         |
| 916      | 9      | 57      | Willow Road          | Single Culvert   | 5.0            | 1.7          | 6.7      |         |
| 494      | 10     | 60      | Lockwood Lane        | Single Culvert   | 5.0            | 1.7          | 6.7      | Yes     |
| 638      | 11     | 61      | Lawrence Road        | Single Culvert   | 5.0            | 1.7          | 6.7      | Yes     |
| 910      | 12     | 69      | Willow Road          | Single Culvert   | 3.6            | 3.0          | 6.6      | Yes     |
| 784      | 13     | 76      | Herrick Road         | Culvert          | 5.0            | 1.6          | 6.6      |         |
| 622      | 14     | 86      | Main Street          | Single Culvert   | 5.0            | 1.4          | 6.4      |         |
| 526      | 15     | 97      | Surrey Lane          | Single Culvert   | 5.0            | 1.3          | 6.3      |         |
| 6961     | 16     | 102     | Great Pond Drive     | Single Culvert   | 5.0            | 1.3          | 6.3      |         |
| 498      | 17     | 109     | Silverbrook Road     | Single Culvert   | 4.0            | 2.2          | 6.2      | Yes     |
| 829      | 18     | 113     | Baldpate Road        | Single Culvert   | 5.0            | 1.2          | 6.2      | Yes     |
| 9009     | 19     | 136     | Off Pinehurst Drive  | Single Culvert   | 5.0            | 1.0          | 6.0      |         |
| 820      | 20     | 140     | Off Ipswich Road     | Single Culvert   | 5.0            | 0.9          | 5.9      |         |
| 786      | 21     | 149     | King George Drive    | Single Culvert   | 3.6            | 2.2          | 5.8      |         |
| 795      | 22     | 150     | Ipswich Road         | Single Culvert   | 5.0            | 0.8          | 5.8      |         |
| 9040     | 23     | 164     | Off Willow Road      | Bridge           | 4.6            | 1.0          | 5.6      |         |
| 843      | 24     | 168     | Porter Road          | Single Culvert   | 0.6            | 5.0          | 5.6      | Yes     |
| 821      | 25     | 175     | Ipswich Road         | Single Culvert   | 4.6            | 0.9          | 5.5      |         |
| 9033     | 26     | 182     | High Ridge Road      | Single Culvert   | 4.0            | 1.4          | 5.4      |         |
| 523      | 27     | 190     | Silver Brook Road    | Single Culvert   | 2.0            | 3.2          | 5.2      | Yes     |
| 516      | 28     | 203     | Silverbrook Road     | Single Culvert   | NA             | 4.9          | 4.9      | Yes     |
| 579      | 29     | 204     | Topsfield Road       | Single Culvert   | 4.0            | 0.9          | 4.9      |         |

Table 28. Non-tidal crossings in the portion of the Great Marsh study region within the Town of Boxford, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted. (page 1 of 3)

Table 28 (Continued). Non-tidal crossings in the portion of the Great Marsh study region within the Town of Boxford, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted. (page 2 of 3)

|          | Priori | ty Rank |                       |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|-----------------------|------------------|----------------|--------------|----------|---------|
|          |        | -       |                       |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                       |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                  | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 482      | 30     | 208     | Lockwood Lane         | Single Culvert   | 3.0            | 1.8          | 4.8      |         |
| 403      | 31     | 224     | Middleton Road        | Single Culvert   | 3.0            | 1.3          | 4.3      |         |
| 6995     | 32     | 236     | Brook Road            | Culvert          | 0.0            | 4.1          | 4.1      |         |
| 814      | 33     | 254     | Baldpate Road         | Single Culvert   | 0.0            | 3.2          | 3.2      | Yes     |
| 577      | 34     | 270     | Cahoon Road           | Single Culvert   | 1.6            | 1.0          | 2.6      |         |
| 565      | 35     | 278     | Off Winding Oaks Way  | Single Culvert   | NA             | 2.5          | 2.5      |         |
| 607      | 36     | 282     | Topsfield Road        | Single Culvert   | 0.0            | 2.4          | 2.4      |         |
| 694      | 37     | 306     | Depot Road            | Single Culvert   | 0.6            | 1.4          | 2.0      |         |
| 432      | 38     | 307     | Wildmeadow Road       | Single Culvert   | NA             | 2.0          | 2.0      |         |
| 568      | 39     | 312     | I-95 SB               | Single Culvert   | NA             | 1.9          | 1.9      |         |
| 448      | 40     | 314     | Holmes Rd             | Single Culvert   | 0.0            | 1.9          | 1.9      |         |
| 451      | 41     | 319     | Middleton Road        | Single Culvert   | NA             | 1.9          | 1.9      |         |
| 9004     | 42     | 322     | Off Lockwood Lane     | Multiple Culvert | NA             | 1.9          | 1.9      |         |
| 687      | 43     | 339     | Main Street           | Single Culvert   | NA             | 1.7          | 1.7      |         |
| 893      | 44     | 348     | Valley Road           | Single Culvert   | 0.0            | 1.7          | 1.7      |         |
| 511      | 45     | 356     | Middleton Road        | Single Culvert   | 0.0            | 1.6          | 1.6      | Yes     |
| 571      | 46     | 364     | Townsend Farm Road    | Multiple Culvert | 0.0            | 1.6          | 1.6      |         |
| 592      | 47     | 371     | Towne Road            | Single Culvert   | 0.0            | 1.5          | 1.5      |         |
| 588      | 48     | 378     | Townsend Farm Road    | Single Culvert   | 0.6            | 0.9          | 1.5      |         |
| 677      | 49     | 383     | I-95 NB               | Single Culvert   | NA             | 1.4          | 1.4      |         |
| 763      | 50     | 384     | Stiles Pond Road      | Multiple Culvert | 0.0            | 1.4          | 1.4      |         |
| 752      | 51     | 385     | Batchelder Road       | Multiple Culvert | 0.0            | 1.4          | 1.4      |         |
|          |        |         |                       | Open Bottom      |                |              |          |         |
| 9002     | 52     | 386     | Andrew's Farm Road    | Arch             | 0.6            | 0.8          | 1.4      |         |
|          |        |         | Service Road off Pond |                  |                |              |          |         |
| 730      | 53     | 390     | Street                | Single Culvert   | 0.0            | 1.4          | 1.4      |         |
| 9007     | 54     | 392     | Off Georgetown Road   | Single Culvert   | NA             | 1.4          | 1.4      |         |
| 720      | 55     | 403     | Main Street           | Multiple Culvert | 0.0            | 1.3          | 1.3      | Yes     |
| 490      | 56     | 420     | Middleton Road        | Single Culvert   | NA             | 1.2          | 1.2      |         |
| 718      | 57     | 429     | Ipswich Road          | Single Culvert   | NA             | 1.2          | 1.2      |         |
| 641      | 58     | 430     | Brookview Road        | Bridge           | NA             | 1.1          | 1.1      |         |

Table 28. (Continued). Non-tidal crossings in the portion of the Great Marsh study region within the Town of Boxford, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted. (page 3 of 3)

|          | Priori | ty Rank |                          |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|--------------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                          |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                          |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                     | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 9034     | 59     | 442     | Off Topsfield Road       | Bridge           | NA             | 1.1          | 1.1      |         |
| 721      | 60     | 443     | Georgetown Road          | Bridge           | 0.0            | 1.1          | 1.1      |         |
| 845      | 61     | 460     | Anna's Way               | Single Culvert   | 0.0            | 1.0          | 1.0      |         |
| 679      | 62     | 463     | Pye Brook Lane           | Multiple Culvert | 0.0            | 0.9          | 0.9      | Yes     |
| 624      | 63     | 466     | Towne Road               | Multiple Culvert | 0.0            | 0.9          | 0.9      |         |
|          |        |         | Service Road off Pond    |                  |                |              |          |         |
| 736      | 64     | 471     | Street                   | Bridge           | 0.0            | 0.9          | 0.9      |         |
| 732      | 65     | 473     | I-95 NB                  | Single Culvert   | NA             | 0.9          | 0.9      |         |
| 597      | 66     | 474     | Middleton Road           | Bridge           | NA             | 0.8          | 0.8      |         |
| 409      | 67     | 479     | Interstate 95            | Single Culvert   | NA             | 0.8          | 0.8      |         |
| 499      | 68     | 480     | Lockwood Lane            | Multiple Culvert | 0.0            | 0.8          | 0.8      |         |
| 688      | 69     | 516     | I-95 NB                  | Single Culvert   | NA             | 0.6          | 0.6      |         |
| 831      | 70     | 520     | Georgetown Road          | Single Culvert   | 0.0            | 0.6          | 0.6      |         |
| 457      | 71     | 524     | I-95 SB                  | Single Culvert   | NA             | 0.6          | 0.6      |         |
|          |        |         |                          | Open Bottom      |                |              |          |         |
| 692      | 72     | 525     | I-95 NB                  | Arch             | 0.0            | 0.6          | 0.6      |         |
| 501      | 73     | 527     | Lockwood Lane            | Bridge           | 0.0            | 0.6          | 0.6      |         |
| 830      | 74     | 544     | Great Pond Ave           | Bridge           | 0.0            | 0.5          | 0.5      |         |
|          |        |         | Power Lines East of I-95 |                  |                |              |          |         |
| 685      | 75     | 577     | NB                       | Bridge           | NA             | 0.2          | 0.2      |         |
| 475      | 76     | 582     | Off Middleton Road       | Ford             | NA             | 0.2          | 0.2      |         |
| 865      | 77     | 589     | Main Street              | Single Culvert   | 0.0            | 0.1          | 0.1      |         |
| 471      | 78     | 600     | I-95 NB                  | Bridge           | NA             | 0.1          | 0.1      |         |
| 473      | 79     | 601     | I-95 SB                  | Bridge           | NA             | 0.0          | 0.0      |         |
| 357      | 80     | 604     | Interstate 95            | Bridge           | NA             | 0.0          | 0.0      |         |
| 356      | 81     | 605     | Interstate 95            | Bridge           | NA             | 0.0          | 0.0      |         |
| 575      | 82     | 611     | Mill Road                | Bridge           | 0.0            | 0.0          | 0.0      |         |

### Danvers

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of Danvers. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>36</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>37</sup>.

Approximately 3.9 square miles of the Town of Danvers is located within the Great Marsh study region. This portion of the study watershed, located on the northern and western edges of Danvers, is outside of the coastal zone so Danvers is considered an inland municipality in our analysis (Figure 42). As an inland municipality, Danvers does not have any tidal crossings or coastal stabilization structures. Our analysis considered a total of 18 potential barrier sites with structures confirmed and prioritized at 13 of those locations including 3 dams (Table 29) and 10 non-tidal crossings (Table 30).

None of the dams in Danvers were ranked for priority. All three of the dams in the Danvers portion of the study region are high hazard structures that have high priority scores (Table 29). All three structures are associated with the Putnamville Reservoir and are critical components of the Salem-Beverly water supply system.

We inventoried and prioritized 10 non-tidal crossings in the Town of Danvers based on combined ecological and infrastructure risk. Poor scores in the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. None of the crossings were identified as high priorities for on a regional level. The highest priority crossing, located on Valley Road, ranked 180<sup>th</sup> across the entire study region (Table 31). With a CRI score of 4, this was also the only structure that was identified as a significant infrastructure risk by our screening tool. Sites with infrastructure risk (CRI) scores of 4 or greater indicating that they were not expected to pass flows associated with storms that have a 10% or higher chance of occurring on any given year. While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms. We recommend further investigation at this site as it is a single culvert that could potentially be replaced with larger and more storm resilient/fish friendly crossings when it comes time for replacement or maintenance.

We did not develop conceptual designs for upgrade of any crossings located in the Town of Danvers.

<sup>&</sup>lt;sup>36</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>37</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

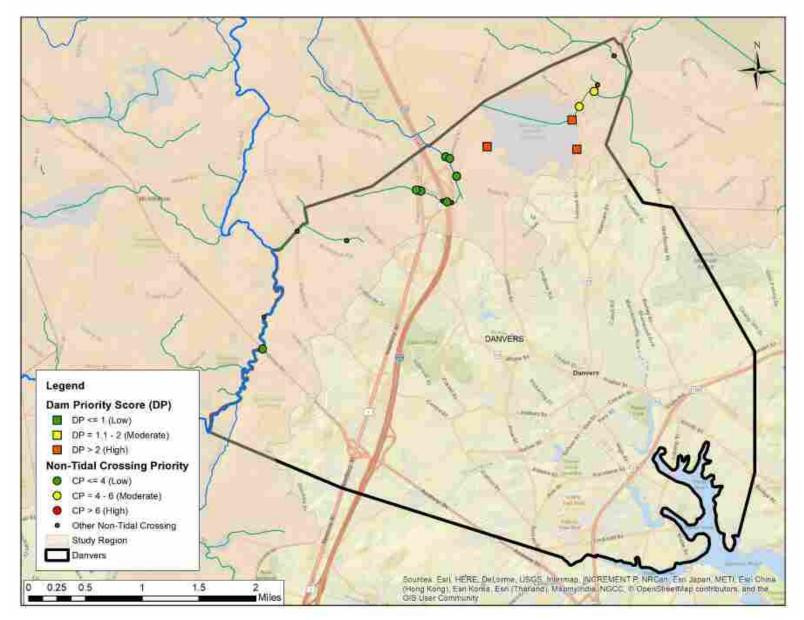



Figure 42. Map showing locations and prioritization scores for dams and non-tidal crossings in the Great Marsh Study region within the Town of Danvers, MA.

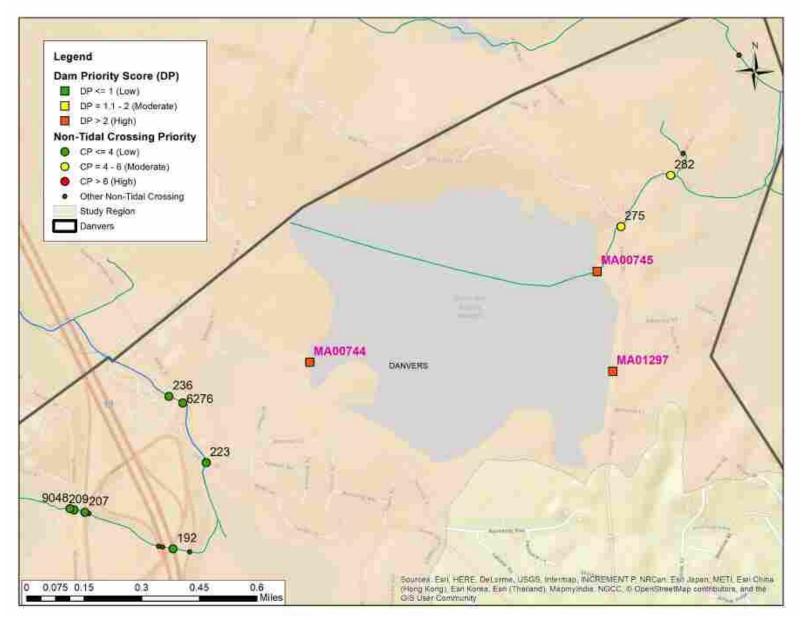



Figure 43. Closeup view of dams and non-tidal crossings in the Great Marsh Study region within the Town of Danvers, MA. Dam ID shown in pink and crossing ID shown in black.

Table 29. Dams in the portion of the Great Marsh study region within the Town of Danvers, MA. All dams in Danvers are associated with the Putnamville Reservoir and were not prioritized due to their importance as part of a drinking water supply system.

|         | Priori | ty Rank |                                 | Pri            | ority Scoring | 5          | Active/  |
|---------|--------|---------|---------------------------------|----------------|---------------|------------|----------|
|         |        |         |                                 | Infrastructure | Ecological    | Priority   | Priority |
| Dam ID  | Town   | Region  | Dam Name                        | Risk (RI)      | Impact (EI)   | Score (DP) | Project  |
| MA00745 | NA     | NA      | Putnamville Reservoir Dam       | 2              | 1             | 3          |          |
| MA00744 | NA     | NA      | Putnamville Reservoir West Dike | 2              | 0.5           | 2.5        |          |
| MA01297 | NA     | NA      | Putnamville Reservoir East Dike | 2              | 0.5           | 2.5        |          |

Table 30. Non-tidal crossings in the portion of the Great Marsh study region within the Town of Danvers, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted.

|          | Priori | ty Rank |                          |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|--------------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                          |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                          |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                     | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 282      | 1      | 180     | Valley Road              | Single Culvert   | 4.0            | 1.4          | 5.4      |         |
| 275      | 2      | 206     | Locust Street            | Multiple Culvert | 2.6            | 2.2          | 4.8      |         |
| 209      | 3      | 245     | Ferncroft Road           | Single Culvert   | 2.2            | 1.3          | 3.5      |         |
| 9048     | 4      | 262     | Off Ferncroft Road       | Bridge           | 2.6            | 0.2          | 2.8      |         |
| 236      | 5      | 268     | Old North Street         | Single Culvert   | 1.2            | 1.4          | 2.6      |         |
| 6276     | 6      | 350     | Route 1                  | Culvert          | 0.0            | 1.7          | 1.7      |         |
| 207      | 7      | 388     | Us 1/I95 Interchange     | Single Culvert   | NA             | 1.4          | 1.4      |         |
| 223      | 8      | 398     | Old North Street         | Multiple Culvert | 0.0            | 1.3          | 1.3      |         |
| 192      | 9      | 423     | I-95 NB                  | Multiple Culvert | NA             | 1.2          | 1.2      |         |
| 118      | 10     | 581     | Andover Street Route 114 | Bridge           | 0.0            | 0.2          | 0.2      |         |

## Georgetown

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of Georgetown. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>38</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>39</sup>.

Almost all of the Town of Georgetown is located within the Great Marsh study region covering an area of approximately 12.9 square miles. All but the northwestern corner of Georgetown is within the study region and the town is outside of the coastal zone (Figure 45). As an inland municipality, Georgetown does not have any tidal crossings or coastal stabilization structures. Our analysis considered a total of 44 potential barrier sites with structures confirmed and prioritized at 40 of those locations including 1 dam (Table 32) and 39 non-tidal crossings (Table 31).

The Pentucket Pond Outlet Dam (MA00261) is the only dam located within the Town of Georgetown. This dam is a high priority, tied for 2<sup>nd</sup> highest priority in the region based on a combination of risk and ecological impact (Table 32). The Pentucket Pond Outlet Dam is the sixth and



Figure 44. Outlet of road-stream crossing at Nelson Street, Georgetown (Site #862)

final dam on the Parker River between the ocean and Pentucket Pond, the primary alewife spawning pond in the Parker watershed. In addition to its impact on fish and wildlife migration, it is also rated as a significant hazard dam by the MA Office of Dam Safety, causing it to have a higher priority rating than the other Parker River dams.

We inventoried and prioritized 39 non-tidal crossings in the Town of Georgetown based on combined ecological and infrastructure risk. The screening results identified three crossings that were among the 50 highest priority crossings region-wide (Table 31). The highest priority crossing in town is a single culvert on Nelson Street (Site #862) which ranked 10<sup>th</sup> regionally. Poor scores in the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are

<sup>&</sup>lt;sup>38</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>39</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. Fourteen of the 15 highest priority sites had infrastructure risk (CRI) scores of 4 or greater. This indicates that they were not expected to pass flows associated with storms that have a 10% or higher chance of occurring on any given year. While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms. The vast majority (13) of the 15 highest priority crossings in Georgetown are single or multiple culverts that could potentially be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance.

As part of this study, Meridian Associates, Inc. (MAI) developed conceptual design plans for the replacement of 4 high priority non-tidal crossings with structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures<sup>40</sup>. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site.

- Supporting materials begin on page 180
- Georgetown designs begin on page 217

<sup>&</sup>lt;sup>40</sup> The crossing designed on Jewett Street (Site #1003) was chosen based on its ecological score.

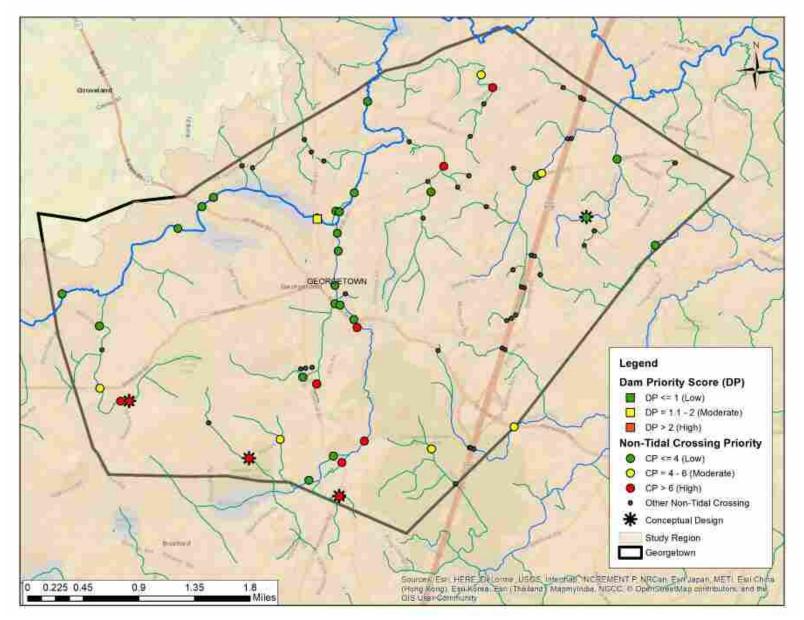



Figure 45. Map showing locations and prioritization scores for dams and non-tidal crossings in the Great Marsh Study region within the Town of Georgetown, MA. Crossings with available conceptual designs are also noted.

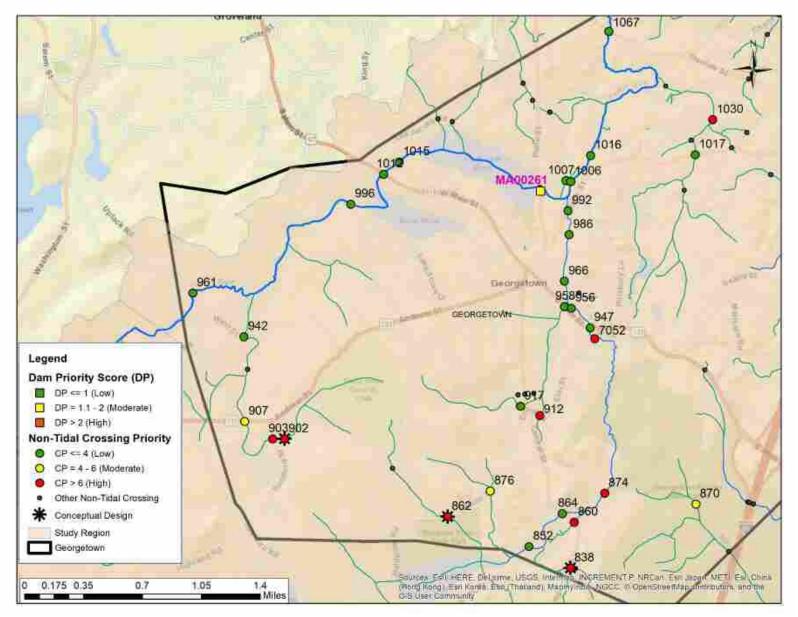



Figure 46. Prioritized dams and non-tidal crossings in the Great Marsh Study region within the western portion of the Town of Georgetown, MA. Dam ID shown in pink and crossing ID shown in black.

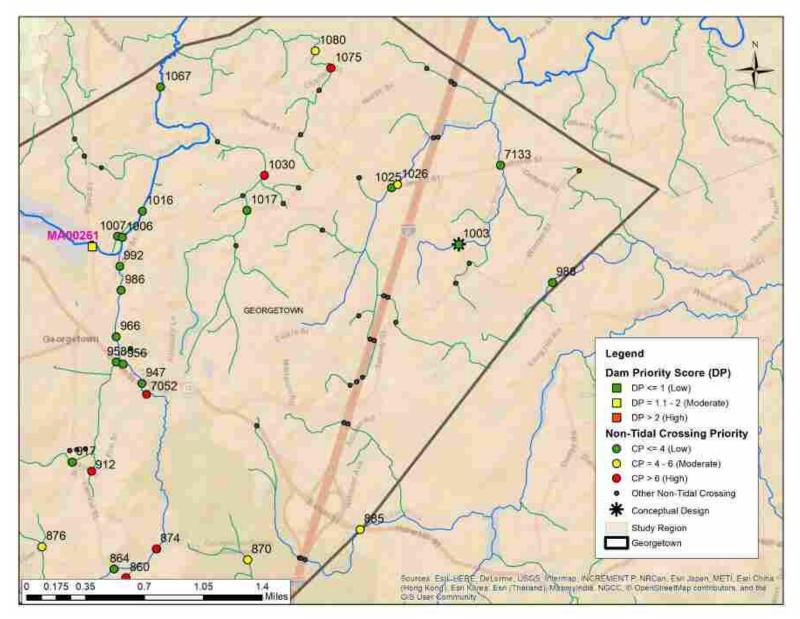



Figure 47. Prioritized dams and non-tidal crossings in the Great Marsh Study region within the eastern portion of the Town of Georgetown, MA. Dam ID shown in pink and crossing ID shown in black.

|          | Priori | ty Rank |                           |                  | Prio           | rity Scoring | •        |         |
|----------|--------|---------|---------------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                           |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                           |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                      | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 862      | 1      | 10      | Nelson Street             | Single Culvert   | 5.0            | 3.5          | 8.5      | Yes     |
| 860      | 2      | 25      | Central Street            | Single Culvert   | 5.0            | 2.5          | 7.5      |         |
| 874      | 3      | 37      | East Street               | Single Culvert   | 5.0            | 2.0          | 7.0      |         |
| 902      | 4      | 64      | Spofford Street           | Single Culvert   | 4.6            | 2.0          | 6.6      | Yes     |
| 7052     | 5      | 77      | Church Street             | Multiple Culvert | 5.0            | 1.5          | 6.5      |         |
| 1030     | 6      | 88      | Brookmeadow Lane          | Multiple Culvert | 4.6            | 1.8          | 6.4      |         |
|          |        |         |                           | Open Bottom      |                |              |          |         |
| 838      | 7      | 96      | Georgetown Road           | Arch             | 5.0            | 1.4          | 6.4      | Yes     |
| 912      | 8      | 107     | Brook Street              | Multiple Culvert | 5.0            | 1.3          | 6.3      |         |
| 903      | 9      | 111     | Hardy Terrace             | Single Culvert   | 4.6            | 1.6          | 6.2      |         |
| 1075     | 10     | 124     | Charles Street            | Multiple Culvert | 5.0            | 1.1          | 6.1      |         |
| 885      | 11     | 138     | East Main Street          | Single Culvert   | 5.0            | 0.9          | 5.9      |         |
| 1026     | 12     | 143     | Jewett Street             | Multiple Culvert | 5.0            | 0.8          | 5.8      |         |
| 876      | 13     | 155     | Nelson Street             | Multiple Culvert | 3.6            | 2.1          | 5.7      |         |
| 1080     | 14     | 157     | Off Dereck Circle         | Bridge           | 5.0            | 0.7          | 5.7      |         |
| 907      | 15     | 165     | Andover Street            | Single Culvert   | 4.0            | 1.6          | 5.6      |         |
| 870      | 16     | 234     | Pingree Farm Road         | Ford             | 3.6            | 0.5          | 4.1      |         |
| 1003     | 17     | 247     | Jewett Street             | Single Culvert   | 0.0            | 3.5          | 3.5      | Yes     |
| 1017     | 18     | 260     | North Street              | Single Culvert   | 0.0            | 2.9          | 2.9      |         |
| 917      | 19     | 264     | Rail Bed off Brook Street | Single Culvert   | NA             | 2.7          | 2.7      |         |
| 852      | 20     | 329     | Hiking Trail              | Single Culvert   | NA             | 1.8          | 1.8      |         |
| 942      | 21     | 335     | West Street               | Single Culvert   | 0.0            | 1.8          | 1.8      |         |
| 864      | 22     | 349     | Central Street            | Single Culvert   | 0.0            | 1.7          | 1.7      |         |
| 7133     | 23     | 389     | Jackman Road              | Culvert          | 0.0            | 1.4          | 1.4      |         |
| 958      | 24     | 391     | East Main Street          | Bridge           | 0.0            | 1.4          | 1.4      |         |
| 956      | 25     | 399     | Penn Brook Avenue         | Bridge           | 0.0            | 1.3          | 1.3      |         |
| 1015     | 26     | 445     | Off West Main Street      | Bridge           | 0.0            | 1.1          | 1.1      |         |
| 947      | 27     | 449     | East Main Street          | Bridge           | 0.6            | 0.4          | 1.0      |         |
| 1007     | 28     | 461     | Mill Street               | Bridge           | 0.0            | 0.9          | 0.9      |         |
| 1067     | 29     | 486     | Thurlow Street            | Bridge           | 0.0            | 0.8          | 0.8      |         |

Table 31. Non-tidal crossings in the portion of the Great Marsh study region within the Town of Georgetown, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted. (Page 1 of 2)

Table 31 (Continued). Non-tidal crossings in the portion of the Great Marsh study region within the Town of Georgetown, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted. (Page 2 of 2)

|          | Priori | ty Rank |                  |                | Prio           | rity Scoring | -        |         |
|----------|--------|---------|------------------|----------------|----------------|--------------|----------|---------|
|          |        |         |                  |                |                | Ecological   | Crossing |         |
| Crossing |        |         |                  |                | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road             | Structure Type | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 988      | 30     | 497     | Farnham Road     | Single Culvert | 0.0            | 0.7          | 0.7      |         |
| 1012     | 31     | 522     | West Main Street | Single Culvert | 0.0            | 0.6          | 0.6      |         |
| 961      | 32     | 539     | West Street      | Bridge         | 0.0            | 0.5          | 0.5      |         |
| 1016     | 33     | 545     | Off North Street | Bridge         | 0.0            | 0.4          | 0.4      |         |
| 996      | 34     | 548     | Bailey Lane      | Bridge         | 0.0            | 0.4          | 0.4      |         |
| 986      | 35     | 558     | Summer Street    | Bridge         | 0.0            | 0.3          | 0.3      |         |
| 992      | 36     | 562     | North Street     | Bridge         | 0.0            | 0.3          | 0.3      |         |
| 966      | 37     | 563     | Winter Street    | Single Culvert | 0.0            | 0.3          | 0.3      |         |
| 1006     | 38     | 570     | Mill Street      | Bridge         | 0.0            | 0.3          | 0.3      |         |
| 1025     | 39     | 587     | Hazan Court      | Bridge         | 0.0            | 0.2          | 0.2      |         |

Table 32. Dams in the portion of the Great Marsh study region within the Town of Georgetown, MA prioritized by Dam Priority Score (DP).

|         | Priori | ty Rank |                           | Pri            | ority Scoring |            | Active/  |
|---------|--------|---------|---------------------------|----------------|---------------|------------|----------|
|         |        |         |                           | Infrastructure | Ecological    | Priority   | Priority |
| Dam ID  | Town   | Region  | Dam Name                  | Risk (RI)      | Impact (EI)   | Score (DP) | Project  |
| MA00261 | 1      | 2       | Pentucket Pond Outlet Dam | 1              | 1             | 2          |          |

## Hamilton

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of Hamilton. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>41</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>42</sup>.

Almost all of the Town of Hamilton is located within the Great Marsh study region covering an area of approximately 14.4 square miles. All but a small area in the southeastern part of the town is within the study region and the Hamilton is outside of the coastal zone (Figure 49). As an inland municipality, Hamilton does not have any tidal crossings or coastal stabilization structures. Our analysis considered a total of 34 potential barrier sites with structures confirmed and prioritized at 28 of those locations including all of which were non-tidal crossings (Table 33). Our analysis did not identify any dams in the Town of Hamilton.

We inventoried and prioritized 28 non-tidal crossings in the Town of Hamilton based on combined ecological and infrastructure risk. The screening results identify three crossings that were among the 50 highest priority crossings regionwide (Table 33). The highest priority crossing in town is a single culvert on Winthrop Street (Sinte #517) which ranked 15th regionally. Poor scores in the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. Eight of the 10 highest priority sites in town had infrastructure risk (CRI) scores of 4 or greater. This indicates that they were not



Figure 48. Outlet of road-stream at Winthrop Street (Site #517). This perched crossing was the highest priority crossing identified by screening tools in the Town of Hamilton.

expected to pass flows associated with storms that have a 10% or higher chance of occurring on any given year.

<sup>&</sup>lt;sup>41</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>42</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms. Nine of the 10 highest priority crossings in Hamilton are single or multiple culverts that could potentially be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance.

As part of this study, Meridian Associates, Inc. (MAI) developed conceptual design plans for the replacement of three high priority non-tidal crossings with structures designed to increase aquatic connectivity and resilience to flooding<sup>43</sup>. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. These designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

- Supporting materials begin on page 180
- Hamilton designs begin on page 222

<sup>&</sup>lt;sup>43</sup> The crossing of Black Brook on Highland Street (Site #527) that was designed was chosen based on its ecological score.



Figure 49. Map showing locations and prioritization scores for dams and non-tidal crossings in the Great Marsh Study region within the Town of Hamilton, MA. Crossings with available conceptual designs are also noted.

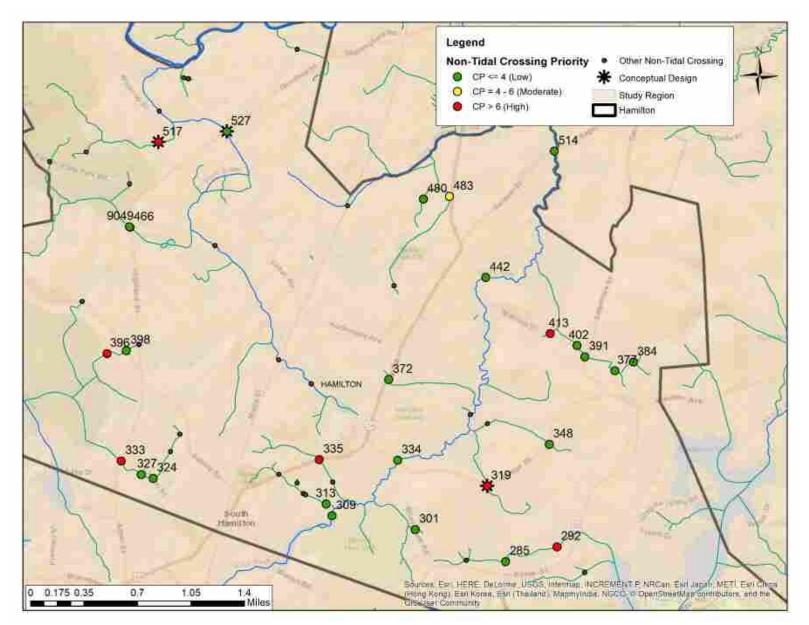



Figure 50. Closeup view of non-tidal crossings in the Great Marsh Study region within the Town of Hamilton, MA. Crossings with available conceptual designs are also noted.

|          |        |         | ity Score (CP). Sites with ava |                  |                |              | are noted. |         |
|----------|--------|---------|--------------------------------|------------------|----------------|--------------|------------|---------|
|          | Priori | ty Rank |                                |                  | Prio           | rity Scoring | Crossing   |         |
|          |        |         |                                |                  | 1              | Ecological   |            |         |
| Crossing |        |         |                                | - · · -          | Infrastructure | Impact       | Priority   | Concept |
| ID       |        | Region  |                                | Structure Type   | Risk (CRI)     | (CEI)        | (CP)       | Designs |
| 517      | 1      | 15      | Winthrop Sreet                 | Single Culvert   | 3.6            | 4.4          | 8.0        | Yes     |
| 413      | 2      | 20      | Moulton Street                 | Single Culvert   | 5.0            | 2.7          | 7.7        |         |
| 292      | 3      | 34      | Alan Road                      | Single Culvert   | 5.0            | 2.0          | 7.0        |         |
| 319      | 4      | 62      | bridge street                  | Single Culvert   | 4.0            | 2.7          | 6.7        | Yes     |
| 396      | 5      | 66      | Morris Avenue                  | Multiple Culvert | 5.0            | 1.6          | 6.6        |         |
| 335      | 6      | 82      | Bay Road                       | Single Culvert   | 4.0            | 2.5          | 6.5        |         |
| 466      | 7      | 101     | Highland Street                | Single Culvert   | 5.0            | 1.3          | 6.3        |         |
| 333      | 8      | 132     | Highland Street                | Single Culvert   | 5.0            | 1.0          | 6.0        |         |
|          |        |         |                                | Open Bottom      |                |              |            |         |
| 483      | 9      | 169     | Bay Road                       | Arch             | 5.0            | 0.6          | 5.6        |         |
| 402      | 10     | 252     | Moulton Street                 | Single Culvert   | 1.0            | 2.3          | 3.3        |         |
| 285      | 11     | 266     | Woodbury Rd                    | Multiple Culvert | 0.6            | 2.1          | 2.7        |         |
| 527      | 12     | 267     | Highland Street                | Single Culvert   | 0.0            | 2.7          | 2.7        | Yes     |
|          |        |         | Myopia Hunt Club access        |                  |                |              |            |         |
| 313      | 13     | 276     | Road                           | Single Culvert   | 1.2            | 1.3          | 2.5        |         |
| 324      | 14     | 310     | Linden Street                  | Single Culvert   | NA             | 2.0          | 2.0        |         |
| 391      | 15     | 317     | Sagamore Street                | Single Culvert   | 0.6            | 1.3          | 1.9        |         |
| 372      | 16     | 333     | Bay Road                       | Single Culvert   | NA             | 1.8          | 1.8        |         |
| 327      | 17     | 336     | Howard Street                  | Multiple Culvert | 0.0            | 1.8          | 1.8        |         |
|          |        |         | Myopia Hunt Club access        | Open Bottom      |                |              |            |         |
| 309      | 18     | 354     | Road                           | Arch             | NA             | 1.6          | 1.6        |         |
| 398      | 19     | 415     | Asbury Street                  | Single Culvert   | 0.0            | 1.2          | 1.2        |         |
| 384      | 20     | 419     | Blueberry Lane                 | Single Culvert   | 0.0            | 1.2          | 1.2        |         |
| 514      | 21     | 434     | Gardner Street                 | Culvert          | 0.0            | 1.1          | 1.1        |         |
| 377      | 22     | 439     | Juniper Road                   | Single Culvert   | 0.0            | 1.1          | 1.1        |         |
| 480      | 23     | 447     | Bay Road                       | Single Culvert   | NA             | 1.0          | 1.0        |         |
| 348      | 24     | 467     | Bridge Street                  | Single Culvert   | 0.0            | 0.9          | 0.9        |         |
| 301      | 25     | 498     | Miles River Road               | Single Culvert   | NA             | 0.7          | 0.7        |         |
| 334      | 26     | 506     | Bridge Street                  | Bridge           | NA             | 0.7          | 0.7        |         |
| 442      | 27     | 523     | Moulton Street                 | Bridge           | 0.0            | 0.6          | 0.6        |         |
| 9049     | 28     | 588     | Off Highland Street            | Bridge           | NA             | 0.1          | 0.1        |         |

Table 33. Non-tidal crossings in the portion of the Great Marsh study region within the Town of Hamilton, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted.

## Middleton

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of Andover. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>44</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>45</sup>.

The Town of Middleton is located outside of the coastal zone and the entire town is located within the Great Marsh study region covering approximately 14.5 square miles (Figure 53). As an inland municipality, Middleton does not have any tidal crossings or coastal stabilization structures. Our analysis considered a total of 45 potential barrier sites with structures confirmed and prioritized at 44 of those locations including 9 dams (Table 34) and 35 non-tidal crossings (Table 35).



Figure 51. South Middleton Dam on the Ipswich River (MA01137).

The Ipswich River Dam (a.k.a. South Middleton Dam, MA01137), located on the Ipswich River in the southwest corner of the town, is the highest priority dam in the study region based on a combination of risk and ecological impact (Table 34). The dam is a significant hazard structure that currently blocks migratory fish access to the upper portion of the Ipswich River watershed including Martins Pond and other historic spawning ponds for alewife. The dam owner (Bostik, Inc.) is working with a group of partners to remove the outdated dam and restore a free flowing river at the site. The Mill Pond Dam (MA03006) also ranks among the higher priority dams in the region, tied for 9<sup>th</sup>. The Emerson Brook Dam at Lake Street (MA00273),

Middleton Pond Outlet Dam (MA00295) and Middleton Pond Southeast Dike (MA02277) are all part of active water supply systems and were scored, but not priority ranked in our analysis.

We inventoried and prioritized 31 non-tidal crossings in the Town of Middleton based on ecological and infrastructure risk. Our screening analysis identified a single culvert on River Street (ID# 100) as the highest priority crossing in Middleton which ranked 58<sup>th</sup> in the region (Table 35). Poor scores in the screening tool

<sup>&</sup>lt;sup>44</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>45</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. Seven of the 10 highest priority sites had infrastructure risk (CRI) scores of 4 or greater. This indicates that they were not expected to pass flows associated with storms that have a 10% or higher chance of occurring on any given year. While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms. Eight of the 10



Figure 52. Outlet of road-stream crossing at Forest Street, Middleton (Site #274).

highest priority crossings in Middleton are single or multiple culverts that could potentially be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance.

As part of this study, Meridian Associates, Inc. (MAI) developed conceptual design plans for the replacement of 3 non-tidal crossings with structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures<sup>46</sup>. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. The designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

- Supporting materials begin on page 180
- Middleton designs begin on page 231

<sup>&</sup>lt;sup>46</sup> The crossing under Essex Street (Site #380) immediately down of the Creighton Pond Dam was selected for design in error. The design is included here as it would be a considerable upgrade over the current structure, but we do not feel this should be a priority for replacement ahead of its regular maintenance schedule. Improved aquatic passage would offer little benefit absent of improvements to fish passage into Creighton Pond. The proposed structure would improve conditions for semi-aquatic animals that may be currently moving over the road surface. It would also improve hydraulic capacity and reduce failure risk during large storm events.

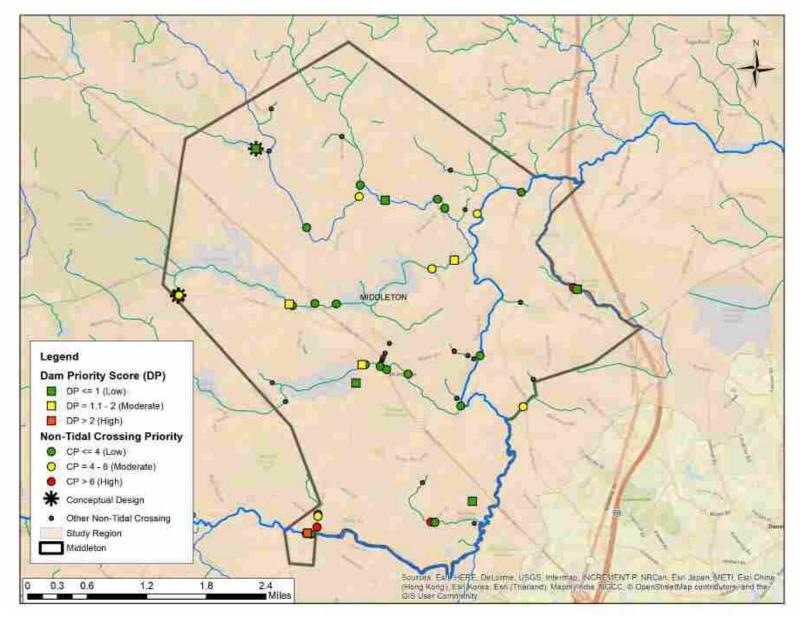



Figure 53. Map showing locations and prioritization scores for dams and non-tidal crossings in the Great Marsh Study region in the Town of Middleton, MA.

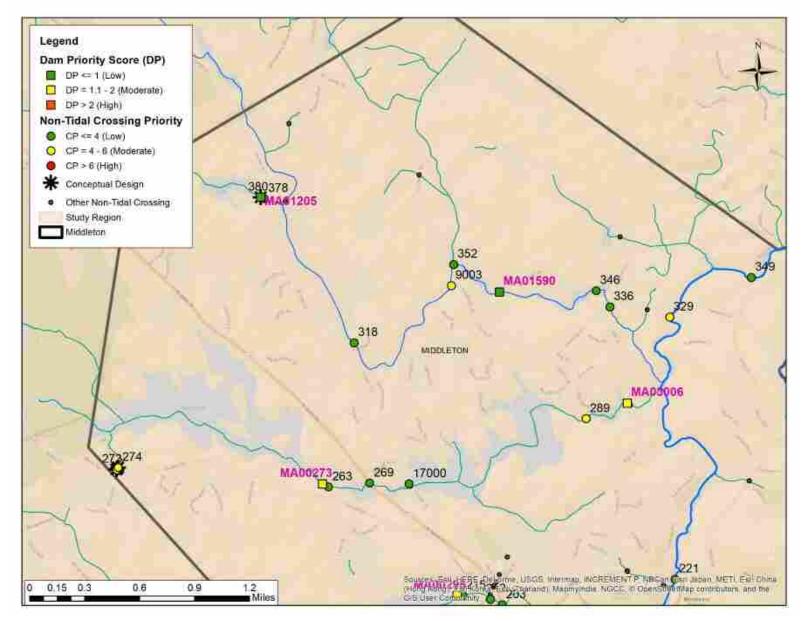



Figure 54. Prioritized dams and non-tidal crossings in the Great Marsh Study region within the northern portion of the Town of Middleton, MA. Dam ID shown in pink and crossing ID shown in black.

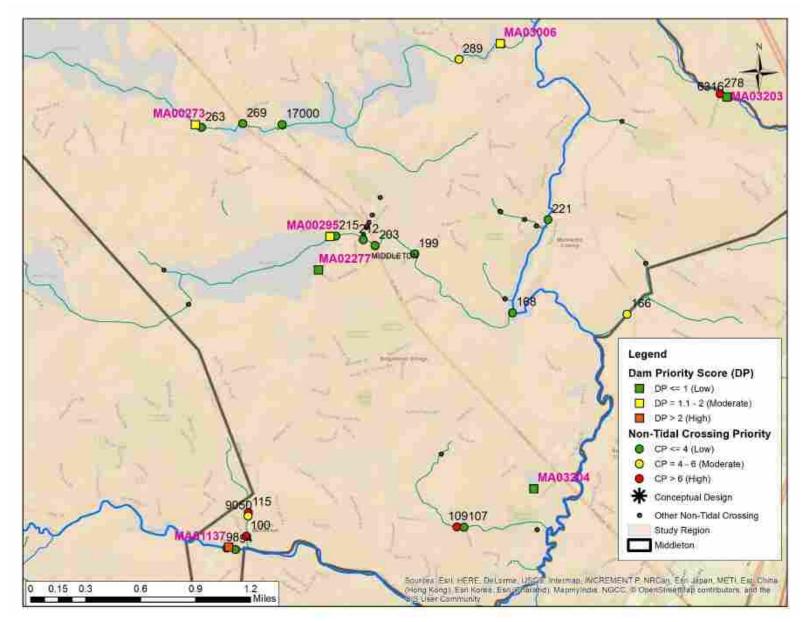



Figure 55. Prioritized dams and non-tidal crossings in the Great Marsh Study region within the southern portion of the Town of Middleton, MA. Dam ID shown in pink and crossing ID shown in black.

Table 34. Dams in the portion of the Great Marsh study region within the Town of Middleton, MA prioritized by Dam Priority Score (DP).

|         | Priori | ty Rank |                               | Pri            | ority Scoring | 5          | Active/  |
|---------|--------|---------|-------------------------------|----------------|---------------|------------|----------|
|         |        |         |                               | Infrastructure | Ecological    | Priority   | Priority |
| Dam ID  | Town   | Region  | Dam Name                      | Risk (RI)      | Impact (EI)   | Score (DP) | Project  |
|         |        |         | Ipswich River Dam (South      |                |               |            |          |
| MA01137 | 1      | 1       | Middleton)                    | 1              | 1.5           | 2.5        | Active   |
| MA03006 | 2      | 9       | Mill Pond Dam                 | 1              | 0.5           | 1.5        |          |
| MA01205 | 3      | 26      | Creighton Pond Dam            | 0.5            | 0.5           | 1          |          |
| MA01590 | 4      | 30      | Prichard Pond Dam             | 0              | 1             | 1          |          |
| MA03203 | 5      | 54      | Coppermine Road Dam           | 0              | 0             | 0          |          |
| MA03204 | 5      | 54      | Paradise Park Dam             | 0              | 0             | 0          |          |
|         |        |         | Emerson Brook Dam At Lake     |                |               |            |          |
| MA00273 | NA     | NA      | Street                        | 1              | 0.5           | 1.5        |          |
| MA00295 | NA     | NA      | Middleton Pond Outlet Dam     | 0.5            | 1             | 1.5        |          |
| MA02277 | NA     | NA      | Middleton Pond Southeast Dike | 0.5            | 0.5           | 1          |          |

Table 35. Non-tidal crossings in the portion of the Great Marsh study region within the Town of Middleton, MA prioritized by Crossing Priority Score (CP).

|          | Priori | ty Rank |                            |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|----------------------------|------------------|----------------|--------------|----------|---------|
|          |        | -       |                            |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                            |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                       | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 100      | 1      | 58      | River Street               | Single Culvert   | 5.0            | 1.7          | 6.7      |         |
| 115      | 2      | 81      | Boston Street              | Single Culvert   | 5.0            | 1.5          | 6.5      |         |
| 109      | 3      | 118     | River Street               | Single Culvert   | 4.6            | 1.6          | 6.2      |         |
| 278      | 4      | 120     | Coppermine Road            | Culvert          | 5.0            | 1.1          | 6.1      |         |
| 273      | 5      | 147     | Forest Street (South Loop) | Single Culvert   | 4.6            | 1.2          | 5.8      | Yes     |
| 274      | 6      | 153     | Forest Street              | Single Culvert   | 3.6            | 2.1          | 5.7      | Yes     |
| 329      | 7      | 191     | Peabody Street             | Bridge           | 5.0            | 0.2          | 5.2      |         |
| 166      | 8      | 201     | Middleton Street           | Single Culvert   | 3.6            | 1.3          | 4.9      |         |
| 9003     | 9      | 207     | Off N Liberty Street       | Bridge           | 4.6            | 0.2          | 4.8      |         |
| 289      | 10     | 216     | Liberty Street             | Multiple Culvert | 3.2            | 1.4          | 4.6      |         |
|          |        |         | Driveway off Boston        |                  |                |              |          |         |
| 9050     | 11     | 217     | Street                     | Single Culvert   | 3.6            | 1.0          | 4.6      |         |
| 349      | 12     | 265     | East Street                | Bridge           | 1.8            | 0.9          | 2.7      |         |
| 380      | 13     | 272     | Essex Street               | Single Culvert   | NA             | 2.6          | 2.6      | Yes     |
| 203      | 14     | 285     | South Main Street Rt 114   | Single Culvert   | NA             | 2.4          | 2.4      |         |
| 6316     | 15     | 305     | Ferncroft Golf Cart Path   | Single Culvert   | NA             | 2.0          | 2.0      |         |
| 199      | 16     | 325     | Mount Vernon               | Single Culvert   | 0.0            | 1.8          | 1.8      |         |
| 17000    | 17     | 327     | Essex Street               | Single Culvert   | NA             | 1.8          | 1.8      |         |
| 94       | 18     | 341     | Boston Street              | Single Culvert   | NA             | 1.7          | 1.7      |         |
| 263      | 19     | 347     | Lake Street                | Single Culvert   | NA             | 1.7          | 1.7      |         |
| 168      | 20     | 363     | Off South Main Street      | Single Culvert   | NA             | 1.6          | 1.6      |         |
| 378      | 21     | 365     | Essex Street               | Culvert          | 0.0            | 1.6          | 1.6      |         |
| 215      | 22     | 401     | Lake Street                | Multiple Culvert | 0.0            | 1.3          | 1.3      |         |
| 212      | 23     | 409     | Pleasant Street            | Single Culvert   | 0.0            | 1.3          | 1.3      |         |
| 98       | 24     | 411     | Boston Road                | Single Culvert   | NA             | 1.3          | 1.3      |         |
| 318      | 25     | 426     | Essex Street               | Bridge           | 0.0            | 1.2          | 1.2      |         |
| 107      | 26     | 451     | Natsue Way                 | Single Culvert   | 0.0            | 1.0          | 1.0      |         |
| 346      | 27     | 462     | Mill Street                | Single Culvert   | 0.0            | 0.9          | 0.9      |         |
| 352      | 28     | 465     | North Liberty Street       | Multiple Culvert | 0.0            | 0.9          | 0.9      |         |
| 336      | 29     | 555     | Peabody Street             | Bridge           | NA             | 0.3          | 0.3      |         |
| 221      | 30     | 572     | Maple Street               | Bridge           | 0.0            | 0.3          | 0.3      |         |
| 269      | 31     | 609     | North Main Street          | Bridge           | 0.0            | 0.0          | 0.0      |         |

# North Andover

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of North Andover. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>47</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>48</sup>.



Figure 56. Outlet of road-stream crossing at Liberty Street, North Andover (Site #472).

The Town of North Andover is located outside of the coastal zone and the southern half of the town is located within the Great Marsh study region covering approximately 16.6 square miles (Figure 57). As an inland municipality, North Andover does not have any tidal crossings or coastal stabilization structures. Our analysis considered a total of 66 potential barrier sites with structures confirmed and prioritized at 64 of those locations including 7 dams (Table 36) and 57 non-tidal crossings (Table 37).

The Stearns Pond Dam (MA01143) is the highest priority dam in North Andover based on our combined screens for risk and ecological impact, tied for ranking 13<sup>th</sup> in the region (Table 36). None of the rest of the dams in the town

rank as particularly high priority in our screening. Three of the 7 dams in North Andover, including the Stearns Pond Dam, are owned and operated by the Massachusetts Department of Conservation and Recreation.

We inventoried and prioritized 57 non-tidal crossings in the Town of North Andover based on ecological and infrastructure risk. The screening results identify three crossings that were among the top 50 region-wide. A single culvert on Liberty Street (Site #472) is the highest priority crossing in North Andover, ranking 3<sup>rd</sup> poorest in the region (Table 37). Poor scores in the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are undersized

<sup>&</sup>lt;sup>47</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>48</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. Eight of the 10 highest priority sites had infrastructure risk (CRI) scores of 4 or greater. This indicates that they were not expected to pass flows associated with storms that have a 10% or higher chance of occurring on any given year. While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms. The 10 highest priority crossings in North Andover are single or multiple culverts that could potentially be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance.

As part of this study, Meridian Associates, Inc. (MAI) developed conceptual design plans for the replacement of 10 non-tidal crossings with structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures<sup>49</sup>. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. These designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

- Supporting materials begin on page 180
- North Andover designs begin on page 251

<sup>&</sup>lt;sup>49</sup> Replacement designs were developed for crossings on Blue Ridge Road (Site #675), Abbott Street (#668), Sharpners Pond road (#411) and Foster Street (#674) based on ecological scores and potential for habitat improvement.

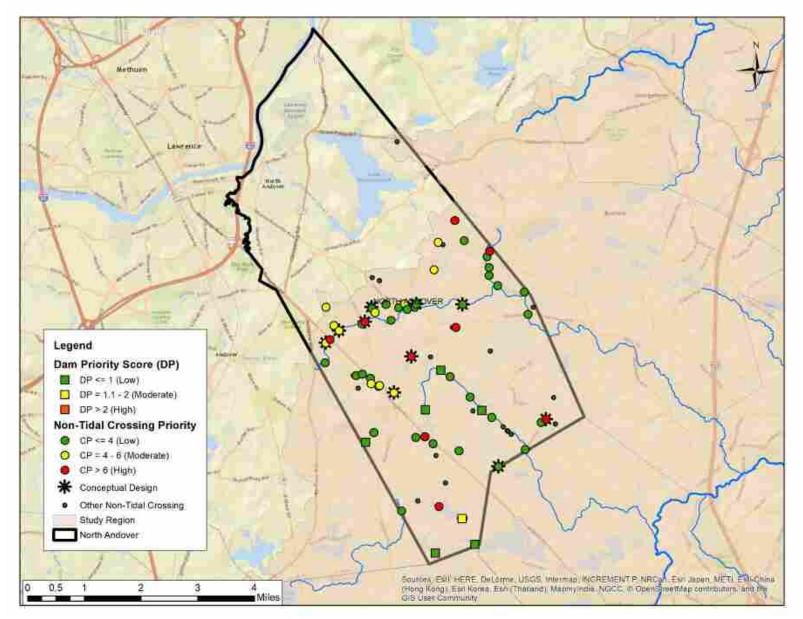



Figure 57. Map showing locations and prioritization scores for dams and non-tidal crossings in the Great Marsh Study region within the Town of North Andover, MA. Crossings with available conceptual designs are also noted.

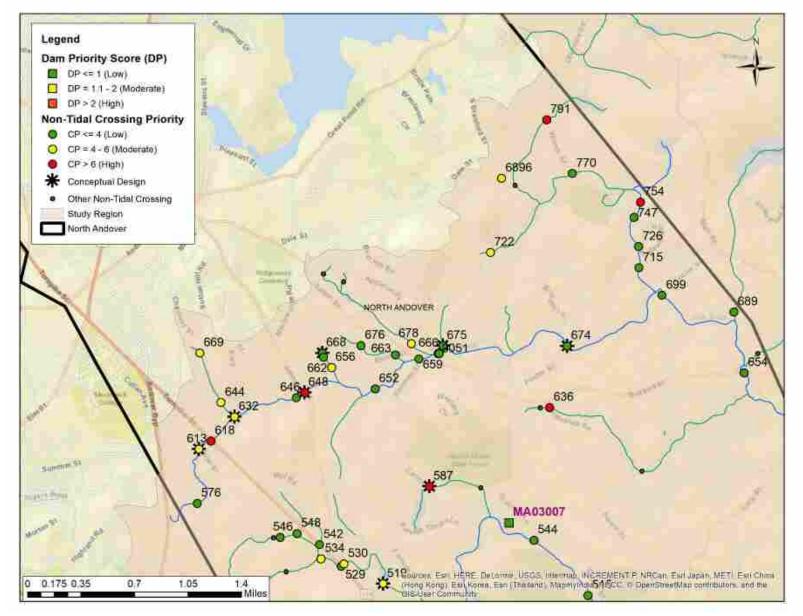



Figure 58. Prioritized dams and non-tidal crossings in the Great Marsh Study region within the northern portion of the Town of North Andover, MA. Dam ID shown in pink and crossing ID shown in black.

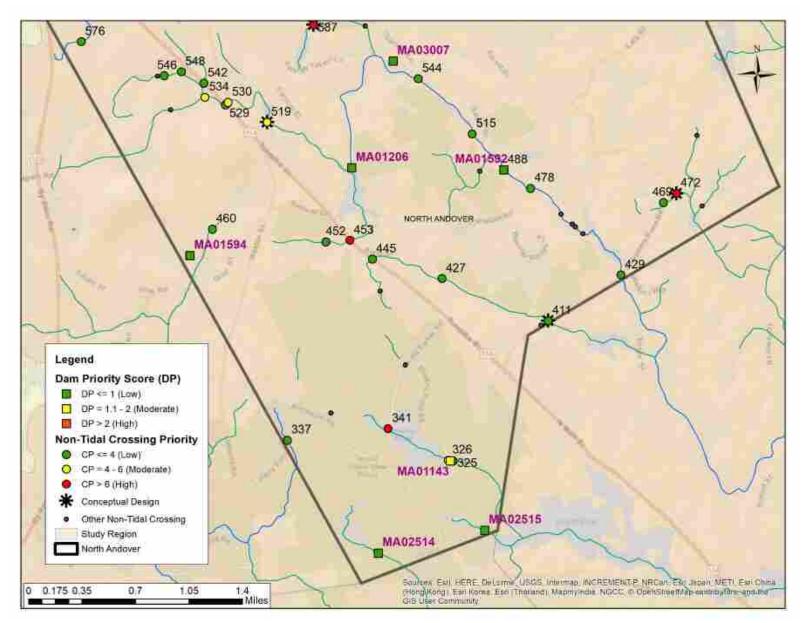



Figure 59. Prioritized dams and non-tidal crossings in the Great Marsh Study region within the southern portion of the Town of North Andover, MA. Dam ID shown in pink and crossing ID shown in black.

Table 36. Dams in the portion of the Great Marsh study region within the Town of North Andover, MA prioritized by Dam Priority Score (DP).

|         | Priori | ty Rank |                             | Pri            | ority Scoring | 5          | Active/  |
|---------|--------|---------|-----------------------------|----------------|---------------|------------|----------|
|         |        |         |                             | Infrastructure | Ecological    | Priority   | Priority |
| Dam ID  | Town   | Region  | Dam Name                    | Risk (RI)      | Impact (EI)   | Score (DP) | Project  |
| MA01143 | 1      | 12      | Stearns Pond Dam            | 0.5            | 1             | 1.5        |          |
| MA01206 | 2      | 26      | Farnums Mill Pond Dam       | 0.5            | 0.5           | 1          |          |
| MA02514 | 3      | 40      | Salem Pond Dam              | 0.5            | 0             | 0.5        |          |
| MA01592 | 4      | 45      | Boston Brook Dam            | 0              | 0.5           | 0.5        |          |
|         |        |         | Farm Pond - On Skug River D |                |               |            |          |
| MA01594 | 5      | 54      | #10                         | 0              | 0             | 0          |          |
| MA02515 | 5      | 54      | Sudden Pond Dam             | 0              | 0             | 0          |          |
| MA03007 | 5      | 54      | Farr Pond Dam               | 0              | 0             | 0          |          |

Table 37. Non-tidal crossings in the portion of the Great Marsh study region within the Town of North Andover, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted. (Page 1 of 2)

|          | Priority Rank |        |                        |                  | Priority Scoring |            |          |         |
|----------|---------------|--------|------------------------|------------------|------------------|------------|----------|---------|
|          |               |        |                        |                  |                  | Ecological | Crossing |         |
| Crossing |               |        |                        |                  | Infrastructure   | Impact     | Priority | Concept |
| ID       | Town          | Region | Road                   | Structure Type   | Risk (CRI)       | (CEI)      | (CP)     | Designs |
| 472      | 1             | 3      | Liberty Street         | Single Culvert   | 4.6              | 4.4        | 9.0      | Yes     |
| 587      | 2             | 27     | Carlton Lane           | Single Culvert   | 3.6              | 3.6        | 7.2      | Yes     |
| 341      | 3             | 39     | Harold Parker Road     | Single Culvert   | 5.0              | 1.9        | 6.9      |         |
| 754      | 4             | 59     | Saw Mill Road          | Single Culvert   | 5.0              | 1.7        | 6.7      |         |
| 636      | 5             | 67     | Candlestick Rd         | Single Culvert   | 4.6              | 2.0        | 6.6      |         |
| 648      | 6             | 84     | Johnson Street         | Single Culvert   | 4.6              | 1.9        | 6.5      | Yes     |
|          |               |        | Route 114/ Turnpike    |                  |                  |            |          |         |
| 618      | 7             | 98     | Street                 | Single Culvert   | 4.6              | 1.7        | 6.3      |         |
| 791      | 8             | 131    | Winter Street          | Single Culvert   | 5.0              | 1.0        | 6.0      |         |
| 453      | 9             | 134    | Turnpike Street        | Single Culvert   | 5.0              | 1.0        | 6.0      |         |
| 534      | 10            | 144    | Rt 114/Turnpike Street | Multiple Culvert | 2.2              | 3.6        | 5.8      |         |
| 632      | 11            | 162    | Chestnut Street        | Single Culvert   | 4.0              | 1.6        | 5.6      | Yes     |
| 722      | 12            | 170    | South Bradford Street  | Multiple Culvert | 3.6              | 2.0        | 5.6      |         |
| 613      | 13            | 171    | Willow Road            | Single Culvert   | 3.0              | 2.6        | 5.6      | Yes     |
| 519      | 14            | 184    | Brook Strete           | Multiple Culvert | 4.0              | 1.3        | 5.3      | Yes     |
| 678      | 15            | 202    | Keyes Way              | Single Culvert   | 3.6              | 1.3        | 4.9      |         |
| 644      | 16            | 213    | Woodlea Road           | Single Culvert   | 3.6              | 1.1        | 4.7      |         |
| 530      | 17            | 220    | Johnson Street         | Single Culvert   | 3.6              | 0.8        | 4.4      |         |
| 6896     | 18            | 222    | Cortland Drive         | Multiple Culvert | 0.0              | 4.4        | 4.4      |         |
| 669      | 19            | 226    | Blueberry Hill Lane    | Multiple Culvert | 3.2              | 1.1        | 4.3      |         |
| 656      | 20            | 227    | Rea Street             | Single Culvert   | 3.0              | 1.3        | 4.3      |         |
| 326      | 21            | 231    | Stearns Pond Rd        | Single Culvert   | NA               | 4.2        | 4.2      |         |
| 675      | 22            | 243    | Blue Ridge Road        | Single Culvert   | 0.0              | 3.7        | 3.7      | Yes     |
| 548      | 23            | 257    | Rt 114/Turnpike Street | Single Culvert   | NA               | 3.0        | 3.0      |         |
| 668      | 24            | 263    | Abbott St              | Single Culvert   | NA               | 2.8        | 2.8      | Yes     |
|          |               |        |                        | Open Bottom      |                  |            |          |         |
| 676      | 25            | 271    | Nutmeg Lane            | Arch             | 2.6              | 0.0        | 2.6      |         |
| 411      | 26            | 273    | Sharpners Pond Road    | Single Culvert   | 0.0              | 2.6        | 2.6      | Yes     |
| 663      | 27            | 275    | Abbott Street          | Single Culvert   | 1.6              | 0.9        | 2.5      |         |
| 469      | 28            | 277    | Sharpners Pond Road    | Single Culvert   | NA               | 2.5        | 2.5      |         |
| 652      | 29            | 297    | South Cross Road       | Multiple Culvert | 0.0              | 2.2        | 2.2      |         |

Table 37 (continued). Non-tidal crossings in the portion of the Great Marsh study region within the Town of North Andover, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted. (Page 2 of 2)

|          | Priori | ty Rank |                         |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|-------------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                         |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                         |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                    | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 747      | 30     | 302     | Hay Meadow Road         | Single Culvert   | 0.0            | 2.0          | 2.0      |         |
| 659      | 31     | 313     | Salem Street            | Multiple Culvert | 0.0            | 1.9          | 1.9      |         |
| 674      | 32     | 330     | Foster Street           | Multiple Culvert | 0.0            | 1.8          | 1.8      | Yes     |
| 715      | 33     | 342     | Foster Street           | Multiple Culvert | 0.0            | 1.7          | 1.7      |         |
| 546      | 34     | 362     | Rt 114/Turnpike Street  | Single Culvert   | NA             | 1.6          | 1.6      |         |
| 478      | 35     | 367     | Salem Street            | Multiple Culvert | NA             | 1.5          | 1.5      |         |
| 662      | 36     | 369     | Abbott Street           | Single Culvert   | NA             | 1.5          | 1.5      |         |
| 646      | 37     | 372     | Holly Ridge Road        | Multiple Culvert | 0.6            | 0.9          | 1.5      |         |
| 325      | 38     | 376     | Stearns Pond Road       | Bridge           | 0.0            | 1.5          | 1.5      |         |
| 726      | 39     | 394     | Haymeadow Road          | Single Culvert   | 0.0            | 1.3          | 1.3      |         |
| 427      | 40     | 395     | Berry Street            | Single Culvert   | 0.0            | 1.3          | 1.3      |         |
| 460      | 41     | 400     | Stiles Street           | Single Culvert   | NA             | 1.3          | 1.3      |         |
|          |        |         | Turnpike Street/ Route  |                  |                |              |          |         |
| 445      | 42     | 416     | 114                     | Single Culvert   | NA             | 1.2          | 1.2      |         |
| 770      | 43     | 418     | Winter Street           | Multiple Culvert | 0.0            | 1.2          | 1.2      |         |
| 699      | 44     | 421     | Lost Pond Lane          | Single Culvert   | 0.0            | 1.2          | 1.2      |         |
| 542      | 45     | 452     | Rt 114/ Turnpike Street | Single Culvert   | NA             | 1.0          | 1.0      |         |
| 576      | 46     | 470     | Willow Street           | Multiple Culvert | 0.0            | 0.9          | 0.9      |         |
| 9051     | 47     | 487     | Off Blue Ridge Road     | Bridge           | NA             | 0.8          | 0.8      |         |
| 488      | 48     | 491     | Off Salem Street        | Bridge           | NA             | 0.7          | 0.7      |         |
| 544      | 49     | 494     | Hawkins Lane            | Bridge           | 0.0            | 0.7          | 0.7      |         |
| 429      | 50     | 501     | Sharpners Pond Rd       | Multiple Culvert | 0.0            | 0.7          | 0.7      |         |
| 654      | 51     | 518     | Boxford Street          | Single Culvert   | NA             | 0.6          | 0.6      |         |
|          |        |         | Route 114/Turnpike      |                  |                |              |          |         |
| 529      | 52     | 556     | Street                  | Single Culvert   | 0.0            | 0.3          | 0.3      |         |
| 666      | 53     | 567     | Blue Ridge Road         | Multiple Culvert | NA             | 0.3          | 0.3      |         |
| 337      | 54     | 573     | Off Harold Parker Road  | Bridge           | NA             | 0.3          | 0.3      |         |
|          |        |         |                         | Open Bottom      |                |              |          |         |
| 452      | 55     | 584     | Colonial Avenue         | Arch             | 0.0            | 0.2          | 0.2      |         |
| 689      | 56     | 593     | Ogunquit Road           | Bridge           | NA             | 0.1          | 0.1      |         |
|          |        |         |                         | Open Bottom      |                |              |          |         |
| 515      | 57     | 595     | Pheasant Brook Road     | Arch             | 0.0            | 0.1          | 0.1      |         |

#### North Reading

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of North Reading. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>50</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>51</sup>.

The Town of North Reading is outside of the coastal zone and almost the entire town is located within the Great Marsh study region, covering approximately 13.5 square miles (Figure 61). As an inland municipality, North Reading does not have any tidal crossings or coastal stabilization structures. Our analysis considered a total of 35 potential barrier sites with structures confirmed and prioritized at 30 of those locations including 1 dam (Table 38) and 29 non-tidal crossings (Table 39).



Figure 60. Road-stream crossing at Park Street, North Reading (Site #99).

The Bradford Pond Dam (MA02504) is the only dam in North Reading. This dam was not identified as a high priority, tied for 41<sup>st</sup> in ranking among all of the dams in the region (Table 38). While this structure is not ranked as a high priority, it is still important that it be properly monitored and maintained per dam safety requirements as a low hazard dam<sup>52</sup>. If the structure is no longer needed, removal may be an option that could enhance ecological integrity in this portion of the watershed.

We inventoried and prioritized 29 non-tidal crossings in North Reading based on ecological and infrastructure risk. The three highest priority crossings are all located in close proximity to one another near Concord Street. Our screening analysis identified a single culvert off or Concord Street (Site #84) as the highest priority crossing in North Reading, ranking 12th in the region (

Table 39). Poor scores in the screening tool generally indicate that structures are less likely to function properly

during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. The 8 highest priority

<sup>&</sup>lt;sup>50</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>51</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

<sup>&</sup>lt;sup>52</sup> <u>https://www.mass.gov/service-details/dam-safety-inspection-requirements</u>

sites had infrastructure risk (CRI) scores of 4 or greater. This indicates that they were not expected to pass flows associated with storms that have a 10% or higher chance of occurring on any given year. Five of those structures are not expected to pass flows that have a 50% chance of occurring (CRI=5). While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms. All 8 of the highest priority crossings in North Reading are single culverts that could potentially be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance.

We did not develop conceptual designs for upgrade of any crossings located in the Town of North Reading.

Table 38. Dams in the portion of the Great Marsh study region within the Town of North Reading, MA prioritized by Dam Priority Score (DP).

|         | Priori | ty Rank |                   | Pri            | ority Scoring |            | Active/  |
|---------|--------|---------|-------------------|----------------|---------------|------------|----------|
|         |        |         |                   | Infrastructure | Ecological    | Priority   | Priority |
| Dam ID  | Town   | Region  | Dam Name          | Risk (RI)      | Impact (EI)   | Score (DP) | Project  |
| MA02504 | 1      | 40      | Bradford Pond Dam | 0.5            | 0             | 0.5        |          |

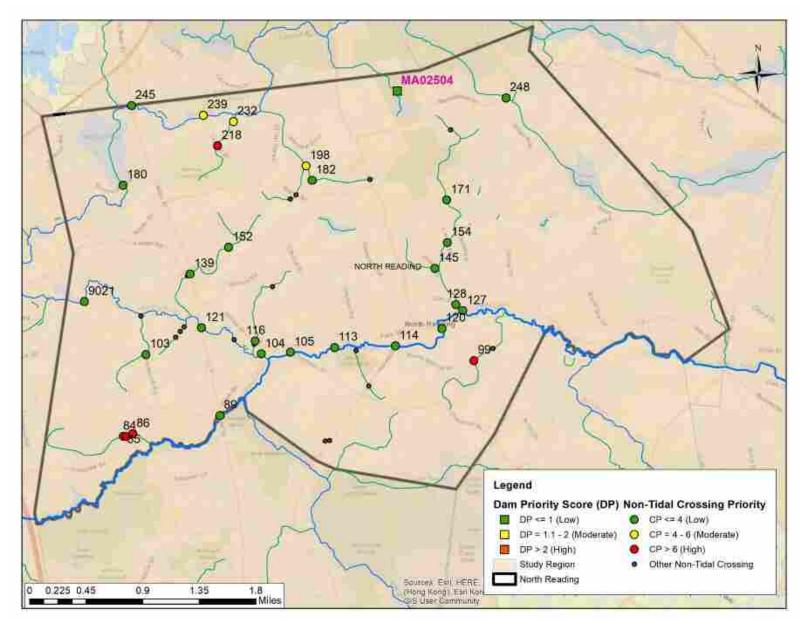



Figure 61. Map showing locations and prioritization scores for dams and non-tidal crossings in the Great Marsh Study region within the Town of North Reading, MA. Dam ID shown in pink and crossing ID shown in black.

Table 39. Non-tidal crossings in the portion of the Great Marsh study region within the Town of North Reading, MA prioritized by Crossing Priority Score (CP).

|          | Priori | ty Rank |                           |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|---------------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                           |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                           |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                      | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 84       | 1      | 12      | Off of Concord Street     | Single Culvert   | 5.0            | 3.3          | 8.3      |         |
| 86       | 2      | 42      | Concord Street            | Single Culvert   | 5.0            | 1.9          | 6.9      |         |
| 85       | 3      | 110     | Off of Concord Street     | Single Culvert   | 4.6            | 1.6          | 6.2      |         |
| 218      | 4      | 112     | Central Street            | Single Culvert   | 5.0            | 1.2          | 6.2      |         |
| 99       | 5      | 122     | Park Street               | Single Culvert   | 5.0            | 1.1          | 6.1      |         |
| 232      | 6      | 158     | Hillview Road             | Single Culvert   | 5.0            | 0.7          | 5.7      |         |
| 239      | 7      | 189     | Central Street            | Single Culvert   | 4.6            | 0.6          | 5.2      |         |
| 198      | 8      | 192     | Wagon Drive               | Single Culvert   | 4.0            | 1.2          | 5.2      |         |
|          |        |         | Lowell Rd (Rt 62) & Main  |                  |                |              |          |         |
| 139      | 9      | 261     | St (Rt 28)                | Single Culvert   | 1.6            | 1.2          | 2.8      |         |
| 154      | 10     | 343     | Lindor Road               | Single Culvert   | 0.0            | 1.7          | 1.7      |         |
| 128      | 11     | 380     | Elm Street                | Multiple Culvert | 0.0            | 1.5          | 1.5      |         |
| 116      | 12     | 404     | Winter Street/Rt 62       | Multiple Culvert | 0.0            | 1.3          | 1.3      |         |
| 103      | 13     | 414     | Southwick Road            | Bridge           | 0.0            | 1.3          | 1.3      |         |
| 248      | 14     | 432     | Marblehead Street         | Single Culvert   | 0.0            | 1.1          | 1.1      |         |
| 113      | 15     | 454     | Central Street            | Bridge           | 0.0            | 1.0          | 1.0      |         |
|          |        |         |                           |                  |                |              |          |         |
| 9021     | 16     | 464     | Salem and Lowell Railroad | Bridge           | 0.0            | 0.9          | 0.9      |         |
| 171      | 17     | 477     | Darrel Drive              | Bridge           | 0.6            | 0.2          | 0.8      |         |
| 152      | 18     | 492     | Country Club Road         | Multiple Culvert | 0.0            | 0.7          | 0.7      |         |
|          |        |         |                           | Open Bottom      |                |              |          |         |
| 145      | 19     | 495     | Duane Drive               | Arch             | 0.6            | 0.1          | 0.7      |         |
| 180      | 20     | 503     | Burrough Road             | Multiple Culvert | 0.0            | 0.7          | 0.7      |         |
| 105      | 21     | 507     | Chestnut Street           | Multiple Culvert | 0.0            | 0.7          | 0.7      |         |
| 120      | 22     | 537     | Washington Street         | Bridge           | 0.0            | 0.5          | 0.5      |         |
| 121      | 23     | 542     | Route 28, Main Street     | Bridge           | 0.0            | 0.5          | 0.5      |         |
| 245      | 24     | 550     | Route 28/Main Street      | Bridge           | 0.0            | 0.4          | 0.4      |         |
| 104      | 25     | 561     | Park Street               | Bridge           | 0.0            | 0.3          | 0.3      |         |
| 182      | 26     | 590     | Barbie Lane               | Bridge           | 0.0            | 0.1          | 0.1      |         |
| 127      | 27     | 599     | Washington Street         | Bridge           | 0.0            | 0.1          | 0.1      |         |
| 114      | 28     | 603     | Haverhill Street          | Bridge           | 0.0            | 0.0          | 0.0      |         |
| 89       | 29     | 610     | Main Street/Rt. 28        | Bridge           | 0.0            | 0.0          | 0.0      |         |

## Peabody

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the City of Peabody. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>53</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>54</sup>.

Approximately 4.6 square miles of the City of Peabody is located within the Great Marsh study region. This portion of the study watershed, located primarily west of Route 1 (Newbury Street), is outside of the coastal zone so Peabody is considered an inland municipality in our analysis (Figure 62). As an inland municipality, Peabody does not have any tidal crossings or coastal stabilization structures. Our analysis considered a total of 27 potential barrier sites with structures confirmed and prioritized at 19 of those locations including 6 dams (Table 40) and 13 non-tidal crossings (Table 41).

None of the dams in Peabody stood out as regional priorities based on our combined screens for risk and ecological impact. The Winona Pond Dam (MA00726) and Suntaug Lake Dam (MA01139) are the two dams with the highest priority scores, but were not ranked because they are actively used as part of the Peabody water supply system (Table 40). The Elginwood Pond Dam (MA01141) was the highest priority dam in Peabody, but only ranked in a tie for 22<sup>nd</sup> regionally. The other three dams were all tied for 54<sup>th</sup> (lowest priority) in the regional ranking. While none of these dams ranked as high priorities, it is still important that they be properly monitored and maintained per dam safety requirements<sup>55</sup>. If structures are no longer needed, removal may be considered as an option to remove risk and enhance ecological integrity.

We inventoried and prioritized 13 non-tidal crossings in the City of Peabody based on combined ecological and infrastructure risk. The highest priority crossing was a single culvert on Lowell Street (Site #56) that ranked 116<sup>th</sup> in the region (Table 41). Poor scores in the combined screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. Site #56 was the only structure in Peabody which ranked as a significant infrastructure-only risk. The culvert had an infrastructure risk (CRI) score of 5 indicating that it is not expected to pass flows associated with storms that have a 50% chance of occurring on any given year. While this does not indicate that the culvert will fail, it is an indicator that the crossing might be worth taking a closer look at to see how it performs during storms. We recommend further investigation at this site as it is a single culvert that could potentially be replaced with larger

<sup>&</sup>lt;sup>53</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>54</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

<sup>&</sup>lt;sup>55</sup> <u>https://www.mass.gov/service-details/dam-safety-inspection-requirements</u>

and more storm resilient/fish friendly crossings when it comes time for replacement or maintenance. We did not develop conceptual designs for upgrade of any crossings located in the City of Peabody.

Table 40. Dams in the portion of the Great Marsh study region within the City of Peabody, MA prioritized by Dam Priority Score (DP).

|         | Priori | ty Rank |                          | Pri            | ority Scoring | 5          | Active/  |
|---------|--------|---------|--------------------------|----------------|---------------|------------|----------|
|         |        |         |                          | Infrastructure | Ecological    | Priority   | Priority |
| Dam ID  | Town   | Region  | Dam Name                 | Risk (RI)      | Impact (EI)   | Score (DP) | Project  |
| MA01141 | 1      | 21      | Elginwood Pond Dam       | 1              | 0             | 1          |          |
| MA01138 | 2      | 54      | Devils Dishfull Pond Dam | 0              | 0             | 0          |          |
| MA03218 | 2      | 54      | Elginwood Pond Dam #2    | 0              | 0             | 0          |          |
| MA03221 | 2      | 54      | Puritan Lawn Pond Dam    | 0              | 0             | 0          |          |
| MA00726 | NA     | NA      | Winona Pond Dam          | 2              | 0.5           | 2.5        |          |
| MA01139 | NA     | NA      | Suntaug Lake Dam         | 1              | 0.5           | 1.5        |          |

Table 41. Non-tidal crossings in the portion of the Great Marsh study region within the City of Peabody, MA prioritized by Crossing Priority Score (CP).

|          | Priori | ty Rank |                 |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|-----------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                 |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                 |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road            | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 56       | 1      | 116     | Lowell Street   | Single Culvert   | 5.0            | 1.2          | 6.2      |         |
| 11       | 2      | 235     | Lake Street     | Multiple Culvert | 0.0            | 4.1          | 4.1      |         |
| 48       | 3      | 253     | Crystal Drive   | Bridge           | 1.6            | 1.6          | 3.2      |         |
| 51       | 4      | 269     | Cobb Ave        | Multiple Culvert | 0.0            | 2.6          | 2.6      |         |
| 32       | 5      | 303     | Pine Street     | Single Culvert   | 0.0            | 2.0          | 2.0      |         |
| 23       | 6      | 308     | Lake Street     | Single Culvert   | NA             | 2.0          | 2.0      |         |
| 33       | 7      | 358     | Pine Street     | Single Culvert   | 0.0            | 1.6          | 1.6      |         |
| 31       | 8      | 373     | Pine Brook Lane | Single Culvert   | NA             | 1.5          | 1.5      |         |
| 34       | 9      | 455     | Off Pine Street | Single Culvert   | 0.0            | 1.0          | 1.0      |         |
| 27       | 10     | 505     | Winona Street   | Bridge           | 0.0            | 0.7          | 0.7      |         |
| 71       | 11     | 531     | Russell Street  | Bridge           | 0.0            | 0.5          | 0.5      |         |
| 53       | 12     | 536     | Lowell Street   | Bridge           | 0.0            | 0.5          | 0.5      |         |
| 97       | 13     | 591     | Boston Street   | Bridge           | 0.0            | 0.1          | 0.1      |         |

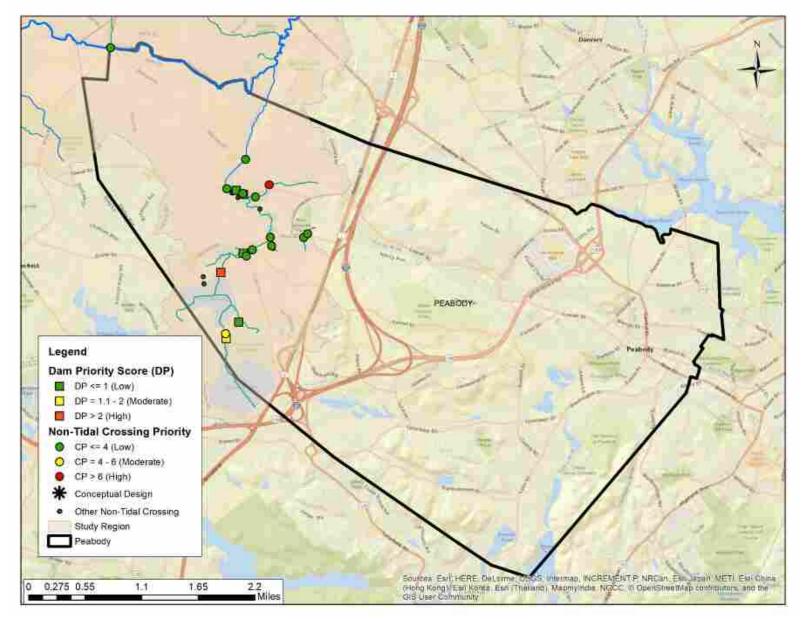



Figure 62. Map showing locations and prioritization scores for dams and non-tidal crossings in the Great Marsh Study region within the City of Peabody, MA.

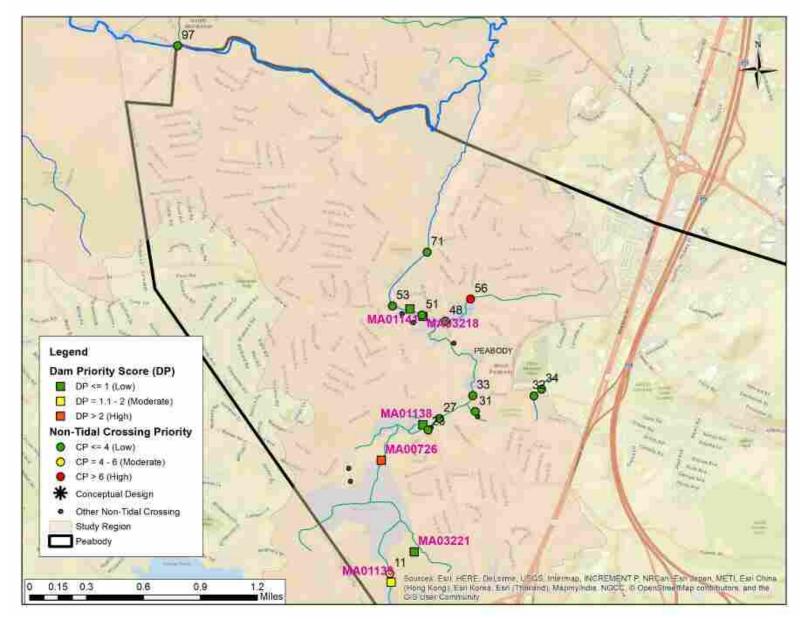



Figure 63. Closeup map showing locations and prioritization scores for dams and non-tidal crossings in the Great Marsh Study region within the City of Peabody, MA. Dam ID shown in pink and crossing ID shown in black.

## Reading

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of Reading. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>56</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>57</sup>.

The Town of Reading is outside of the coastal zone and approximately 4.8 square miles of the northern portion of the town is located within the Great Marsh study region (Figure 65). As an inland municipality, Reading does not have any tidal crossings or coastal stabilization structures. The portion of the study watershed within the Reading town limits does not have many potential barrier sites, but we are including a town summary because we developed a conceptual design for one structure. Our analysis considered a total of 4 potential barrier sites (all non-tidal crossings), with structures confirmed and prioritized at all 4 of those locations (Table 42). Our analysis did not identify any dams in the Town of Reading.



Figure 64. Inlet of road-stream crossing at Haverhill Street, Reading (Site #60).

None of the four non-tidal crossings inventoried and prioritized based on combined ecological and infrastructure risk were identified as high priorities on a regional level. Poor scores in the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. The crossing with the highest combined priority score was a single culvert on Haverhill Street (Site #60) that ranked 55th in the region (Table 42). This was also the only crossing structure that was identified as a significant infrastructure risk by our screening tool. The crossing had an infrastructure risk

(CRI) score of 4.6 indicating that it is not expected to reliably pass flows associated with storms that have a 50% chance of occurring on any given year. While this does not indicate that the culvert will fail, it is an indicator that the crossing might be worth taking a closer look at to see how it performs during storms. We recommend

<sup>&</sup>lt;sup>56</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>57</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

further investigation at this site as it is a single culvert that could potentially be replaced with larger and more storm resilient/fish friendly crossings when it comes time for replacement or maintenance.

As part of this study, Meridian Associates, Inc. (MAI) developed conceptual design plans for the replacement of one non-tidal crossing (ID# 76) with a structure designed to increase aquatic connectivity and resilience to flooding<sup>58</sup>. The design was developed using available site data including field measurements collected by IRWA during the screening analyses. The design provides a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at the site. This design can provide a starting point to more easily incorporate a resilient and long-lived structure into maintenance and replacement schedules. This plan can help with scoping, budgeting and fundraising associated with upgrading the crossing.

Meridian design materials are located in Appendix 3

- Supporting materials begin on page 180
- The Reading design is on page 262

<sup>&</sup>lt;sup>58</sup> Site #76 was identified as a high combined priority in preliminary screening results and selected for design. The site was later significantly downgraded in priority during a quality control review of the model results. While it is not flagged as a high priority crossing in the final results, the design is included as it would be a significant improvement over the existing structure.

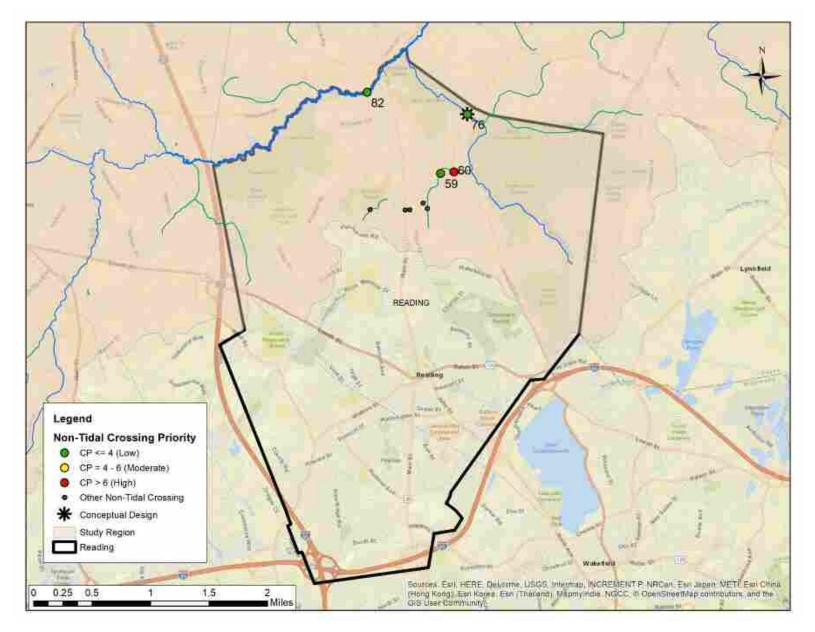



Figure 65. Map showing locations and prioritization scores for non-tidal crossings in the Great Marsh Study region within the Town of Reading, MA. Crossings with available conceptual designs are also noted.

Table 42. Non-tidal crossings in the portion of the Great Marsh study region within the Town of Reading, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted.

|          | Priori | ty Rank |                  |                  | Prio           | rity Scoring | •        |         |
|----------|--------|---------|------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                  |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                  |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road             | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 60       | 1      | 55      | Haverhill Street | Single Culvert   | 4.6            | 2.1          | 6.7      |         |
|          |        |         |                  | Open Bottom      |                |              |          |         |
| 76       | 2      | 422     | Haverhill Street | Arch             | 0.0            | 1.2          | 1.2      | Yes     |
| 59       | 3      | 459     | Eastway          | Multiple Culvert | 0.0            | 1.0          | 1.0      |         |
| 82       | 4      | 608     | Mill Street      | Bridge           | 0.0            | 0.0          | 0.0      |         |

# Topsfield

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of Topsfield. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>59</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal



Figure 66. Howletts Brook Dam, Topsfield (MA01610).

stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>60</sup>.

The Town of Topsfield is located outside of the coastal zone and the entire town is located within the Great Marsh study region covering approximately 12.8 square miles (Figure 67). As an inland municipality, Topsfield does not have any tidal crossings or coastal stabilization structures. Our analysis considered a total of 68 potential barrier sites with structures confirmed and

prioritized at 63 of those locations including 9 dams (Table 43) and 54 non-tidal crossings (Table 44).

The Howletts Brook Dam (MA01610), located just north of Ipswich Road between the intersections of Campmeeting and Willowdale Roads, is the highest priority dam in Topsfield (8<sup>th</sup> in region) based on a combination of risk and ecological impact (Table 43). The dam is a privately owned non-jurisdictional structure that currently blocks migratory fish access to Howlett Brook and Hood Pond. The Bethune Pond Dam (MA01613) also ranks among the higher priority dams in the region, tied for 9<sup>th</sup>. Regardless of priority ranking, it is important that all dam structures be properly monitored and maintained per dam safety requirements<sup>61</sup>. If structures are no longer needed, removal may be considered as an option to remove risk and enhance ecological integrity.

We inventoried and prioritized 54 non-tidal crossings in the Town of Topsfield based on combined ecological and infrastructure risk. The screening results identified five crossings that were among the top 50 priorities region-wide. Single culverts on Meetinghouse Lane (Site #9011) and Pond Street (Site #670) were the two highest priority for immediate attention, respectively ranking 2<sup>nd</sup> and 4<sup>th</sup> in the region (Table 44). Poor scores in

<sup>&</sup>lt;sup>59</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>60</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

<sup>&</sup>lt;sup>61</sup> <u>https://www.mass.gov/service-details/dam-safety-inspection-requirements</u>

the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. The 14 highest priority sites had infrastructure risk (CRI) scores of 4 or greater. This indicates that they were not expected to pass flows associated with storms that have a 10% or higher chance of occurring on any given year. While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms. The eight highest priority crossings in Topsfield are single culverts that could potentially be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance.

As part of this study, Meridian Associates, Inc. (MAI) developed conceptual design plans for the replacement of 14 non-tidal crossings with structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures<sup>62</sup>. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. They can



Figure 1. Outlet of road-stream crossing at River Road in Topsfield (Site #435).

provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. The plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

The Meridian design materials are located in Appendix 3.

- Supporting materials begin on page 180
- Topsfield designs begin on page 277

<sup>&</sup>lt;sup>62</sup> Three of the crossings on Mile Brook (Sites #550, #537, and #536) were chosen for design, in part, because of their proximity to one another along one migration path to Hood Pond. The Howlett Brook crossing of North Street (Site #615) was similarly prioritized based on its importance along the migration path to Hood Pond. A crossing on East Street (Site #658) was designed primarily based on a combination of ecological connectivity and locally identified flooding issues. Crossings on South Main Street (Site #433) and Perkins Row (Site #500) were identified as high priority for infrastructure risk in the preliminary results used to choose crossings for design and were later significantly downgraded in priority during a quality control review of the model results.

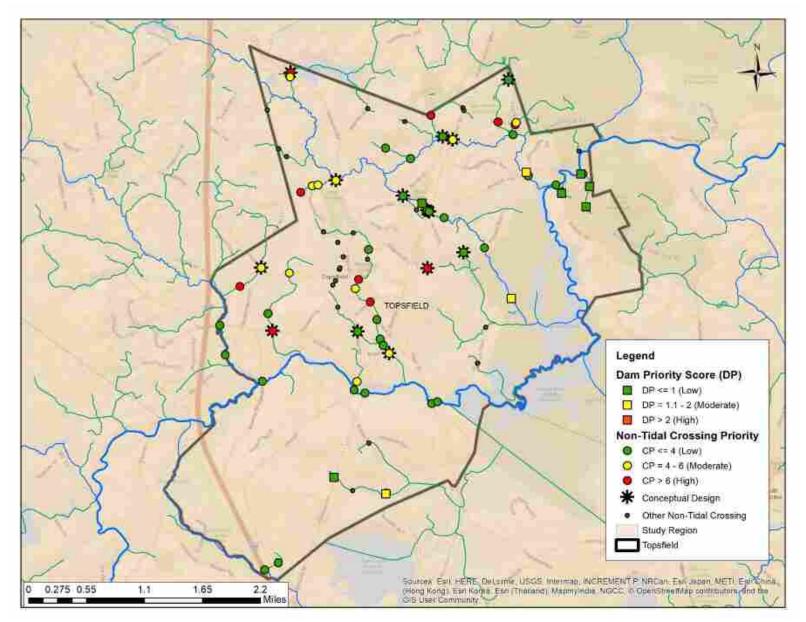



Figure 67. Map showing locations and prioritization scores for dams and non-tidal crossings in the Great Marsh Study region within the Town of Topsfield, MA. Crossings with available conceptual designs are also noted.

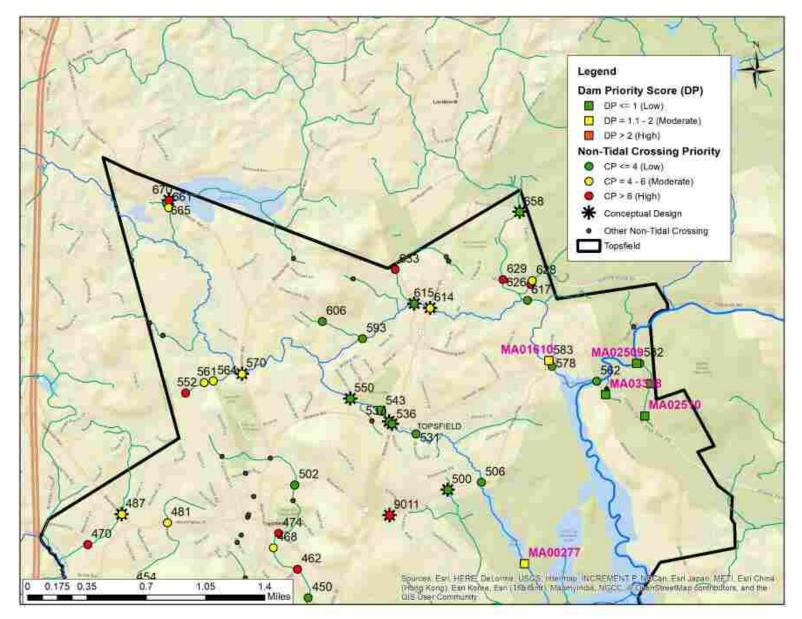



Figure 68. Prioritized dams and non-tidal crossings in the Great Marsh Study region within the northern portion of the Town of Topsfield, MA. Dam ID shown in pink and crossing ID shown in black.

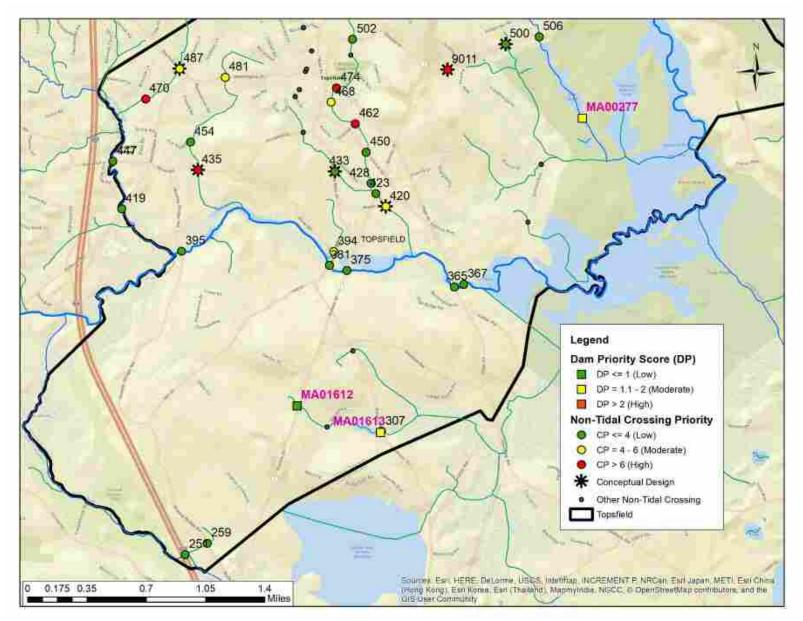



Figure 69. Prioritized dams and non-tidal crossings in the Great Marsh Study region within the southern portion of the Town of Topsfield, MA. Dam ID shown in pink and crossing ID shown in black.

Table 43. Dams in the portion of the Great Marsh study region within the Town of Topsfield, MA prioritized by Dam Priority Score (DP).

|         | Priori | ty Rank |                             | Pri            | ority Scoring | 5          | Active/  |
|---------|--------|---------|-----------------------------|----------------|---------------|------------|----------|
|         |        |         |                             | Infrastructure | Ecological    | Priority   | Priority |
| Dam ID  | Town   | Region  | Dam Name                    | Risk (RI)      | Impact (EI)   | Score (DP) | Project  |
| MA01610 | 1      | 8       | Howletts Brook Dam          | 0              | 2             | 2          | Priority |
| MA01613 | 2      | 9       | Bethune Pond Dam            | 1              | 0.5           | 1.5        |          |
| MA00277 | 3      | 12      | Mile Brook Dam              | 0.5            | 1             | 1.5        |          |
| MA01611 | 4      | 30      | Pleasure Pond Dam           | 0              | 1             | 1          |          |
| MA01612 | 4      | 30      | Peirce Pond Dam             | 0              | 1             | 1          |          |
| MA02509 | 6      | 45      | Ipswich Pond Dam            | 0              | 0.5           | 0.5        |          |
| MA02510 | 7      | 54      | Farm Trail Pond             | 0              | 0             | 0          |          |
| MA02511 | 7      | 54      | Otter Pond Dam              | 0              | 0             | 0          |          |
| MA03338 | 7      | 54      | Bradley Palmer Entrance Dam | 0              | 0             | 0          |          |

|          | Priori | ty Rank |                      |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|----------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                      |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                      |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                 | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 9011     | 1      | 2       | Meetinghouse Lane    | Single Culvert   | 5.0            | 4.3          | 9.3      | Yes     |
| 670      | 2      | 4       | Pond Street          | Single Culvert   | 5.0            | 3.9          | 8.9      | Yes     |
| 435      | 3      | 11      | River Road           | Single Culvert   | 4.6            | 3.7          | 8.3      | Yes     |
| 462      | 4      | 28      | Summer Street        | Single Culvert   | 5.0            | 2.1          | 7.1      |         |
| 633      | 5      | 38      | North Street         | Single Culvert   | 5.0            | 2.0          | 7.0      |         |
| 629      | 6      | 53      | Wildes Road          | Single Culvert   | 5.0            | 1.7          | 6.7      |         |
| 626      | 7      | 70      | Wildes Road          | Single Culvert   | 5.0            | 1.6          | 6.6      |         |
| 470      | 8      | 92      | Lockwood Lane        | Single Culvert   | 5.0            | 1.4          | 6.4      |         |
| 552      | 9      | 119     | Thompson Lane        | Bridge           | 4.6            | 1.5          | 6.1      |         |
| 474      | 10     | 121     | High Street          | Single Culvert   | 5.0            | 1.1          | 6.1      |         |
| 564      | 11     | 141     | Bare Hill Road       | Single Culvert   | 4.0            | 1.9          | 5.9      |         |
| 468      | 12     | 174     | School Street        | Single Culvert   | 5.0            | 0.5          | 5.5      |         |
| 628      | 13     | 178     | East St              | Single Culvert   | 4.0            | 1.4          | 5.4      |         |
| 481      | 14     | 181     | Washington Street    | Single Culvert   | 4.0            | 1.4          | 5.4      |         |
| 661      | 15     | 183     | Off Haverhill Street | Single Culvert   | 3.6            | 1.8          | 5.4      |         |
| 614      | 16     | 195     | Route 1              | Culvert          | 4.0            | 1.2          | 5.2      | Yes     |
| 561      | 17     | 196     | Parsonage Lane       | Single Culvert   | 4.0            | 1.1          | 5.1      |         |
| 394      | 18     | 197     | River Road           | Single Culvert   | 3.6            | 1.5          | 5.1      |         |
| 543      | 19     | 200     | North Street         | Multiple Culvert | 0.0            | 5.0          | 5.0      |         |
| 420      | 20     | 210     | Maple Street         | Multiple Culvert | 3.6            | 1.2          | 4.8      | Yes     |
| 570      | 21     | 228     | Haverill Road        | Bridge           | 3.6            | 0.7          | 4.3      | Yes     |
| 487      | 22     | 233     | Boxford Road         | Single Culvert   | 2.6            | 1.6          | 4.2      | Yes     |
| 550      | 23     | 238     | North St             | Single Culvert   | 0.6            | 3.4          | 4.0      | Yes     |
| 307      | 24     | 283     | Salem Road           | Multiple Culvert | 0.0            | 2.4          | 2.4      |         |
| 531      | 25     | 292     | Brookside Road       | Multiple Culvert | 1.2            | 1.0          | 2.2      |         |
| 502      | 26     | 316     | Howlett St           | Multiple Culvert | 0.6            | 1.3          | 1.9      |         |
| 433      | 27     | 320     | South Main St        | Bridge           | 0.0            | 1.9          | 1.9      | Yes     |
| 658      | 28     | 338     | East Street          | Single Culvert   | 0.0            | 1.7          | 1.7      | Yes     |
| 578      | 29     | 360     | Ipswich Road         | Bridge           | 1.2            | 0.4          | 1.6      |         |

Table 44. Non-tidal crossings in the portion of the Great Marsh study region within the Town of Topsfield, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted. (Page 1 of 2)

Table 44 (continued) Non-tidal crossings in the portion of the Great Marsh study region within the Town of Topsfield, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted. (Page 2 of 2)

|          | Priori | ty Rank |                         |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|-------------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                         |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                         |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                    | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 423      | 30     | 368     | Newburyport Turnpike    | Single Culvert   | 0.0            | 1.5          | 1.5      |         |
| 500      | 31     | 370     | Perkins Row             | Single Culvert   | 0.0            | 1.5          | 1.5      | Yes     |
| 428      | 32     | 393     | Topsfield Linear Common | Single Culvert   | 0.0            | 1.4          | 1.4      |         |
| 251      | 33     | 396     | I-95 NB                 | Multiple Culvert | NA             | 1.3          | 1.3      |         |
| 617      | 34     | 402     | East Street             | Single Culvert   | NA             | 1.3          | 1.3      |         |
| 537      | 35     | 406     | Ipswich Road            | Multiple Culvert | 0.0            | 1.3          | 1.3      | Yes     |
| 593      | 36     | 407     | Aaron Drive             | Multiple Culvert | NA             | 1.3          | 1.3      |         |
| 454      | 37     | 425     | Fox Run Extension       | Single Culvert   | NA             | 1.2          | 1.2      |         |
| 259      | 38     | 427     | Rowley Bridge Road      | Bridge           | NA             | 1.2          | 1.2      |         |
| 615      | 39     | 428     | North Street            | Culvert          | NA             | 1.2          | 1.2      | Yes     |
| 665      | 40     | 450     | Haverhill Road          | Single Culvert   | 0.0            | 1.0          | 1.0      |         |
| 419      | 41     | 456     | Washington Street       | Bridge           | NA             | 1.0          | 1.0      |         |
| 450      | 42     | 472     | Central Street          | Multiple Culvert | NA             | 0.9          | 0.9      |         |
| 447      | 43     | 476     | River Road              | Bridge           | NA             | 0.8          | 0.8      |         |
| 583      | 44     | 500     | Unnamed Path            | Bridge           | NA             | 0.7          | 0.7      |         |
| 606      | 45     | 502     | Off Timber Lane         | Single Culvert   | NA             | 0.7          | 0.7      |         |
| 562      | 46     | 510     | Asbury Street           | Bridge           | 0.0            | 0.6          | 0.6      |         |
|          |        |         |                         | Open Bottom      |                |              |          |         |
| 506      | 47     | 540     | Perkins Row             | Arch             | 0.0            | 0.5          | 0.5      |         |
| 536      | 48     | 541     | Newburyport Turnpike    | Bridge           | 0.0            | 0.5          | 0.5      | Yes     |
| 367      | 49     | 576     | Railroad                | Bridge           | NA             | 0.2          | 0.2      |         |
| 582      | 50     | 586     | Bradley Palmer Trail    | Bridge           | NA             | 0.2          | 0.2      |         |
| 365      | 51     | 594     | Route 97                | Bridge           | 0.0            | 0.1          | 0.1      |         |
| 381      | 52     | 598     | Salem Road              | Bridge           | 0.0            | 0.1          | 0.1      |         |
| 395      | 53     | 602     | Rowley Bridge Road      | Bridge           | 0.0            | 0.0          | 0.0      |         |
|          |        |         | Newburyport Turnpike    | Open Bottom      |                |              |          |         |
| 375      | 54     | 606     | (Rt. 1)                 | Arch             | NA             | 0.0          | 0.0      |         |

#### Wenham

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of Wenham. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>63</sup>.



Figure 70. Inlet of road-stream crossing at Hull Street in Wenham (Site #161).

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>64</sup>.

The Town of Wenham is located outside of the coastal zone and almost the entire town is located within the Great Marsh study region covering approximately 7.4 square miles (Figure 71). As an inland municipality, Wenham does not have any tidal crossings or coastal stabilization structures. Our analysis considered a total of 30 potential barrier sites with structures confirmed and

prioritized at 26 of those locations including 1 dam (Table 45) and 25 non-tidal crossings (Table 46).

The Longham Reservoir Dam (MA00182) is the only dam we identified in the Town of Wenham (Table 45). This dam is a significant hazard structure located in the headwaters of the Miles River. This dam had a fairly high priority score based on a combination of risk and ecological impact screening, but was not priority ranked because of it is an actively used component of the Salem-Beverly water supply system.

We inventoried and prioritized 25 non-tidal crossings in the Town of Wenham based on combined ecological and infrastructure risk. The highest priority structure identified by the screening analysis was a single culvert located on Dodge Row (Site #188). This culvert, on a tributary feeding into Longham Reservoir, was also the highest ranking non-tidal crossing in the entire region (Table 46). Poor scores in the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. The 10 highest priority sites had infrastructure risk (CRI) scores of 4 or greater. This

<sup>&</sup>lt;sup>63</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>64</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

indicates that they were not expected to pass flows associated with storms that have a 10% or higher chance of occurring on any given year. While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms. Eight of the 10 highest priority crossings in Wenham are culverts that could potentially be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance.

As part of this study, Meridian Associates, Inc. (MAI) developed conceptual design plans for the replacement of 3 non-tidal crossings with structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures<sup>65</sup>. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. These designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

The Meridian design materials are located in Appendix 3.

- Supporting materials begin on page 180
- Wenham designs begin on page 292

<sup>&</sup>lt;sup>65</sup> Site #233 on Grapevine Road was selected for design largely due to structure condition and municipal interest in replacement at this crossing.

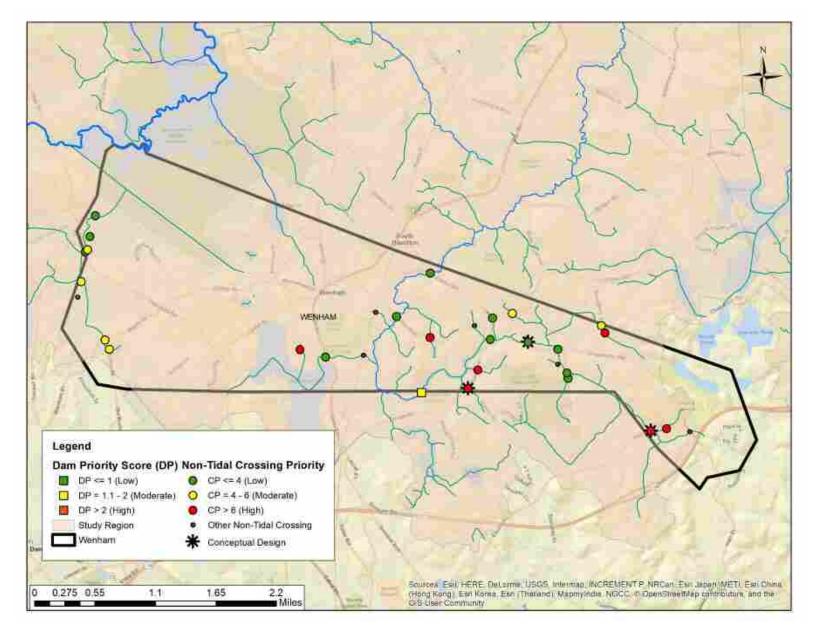



Figure 71. Map showing locations and prioritization scores for dams and non-tidal crossings in the Great Marsh Study region within the Town of Wenham, MA. Crossings with available conceptual designs are also noted.

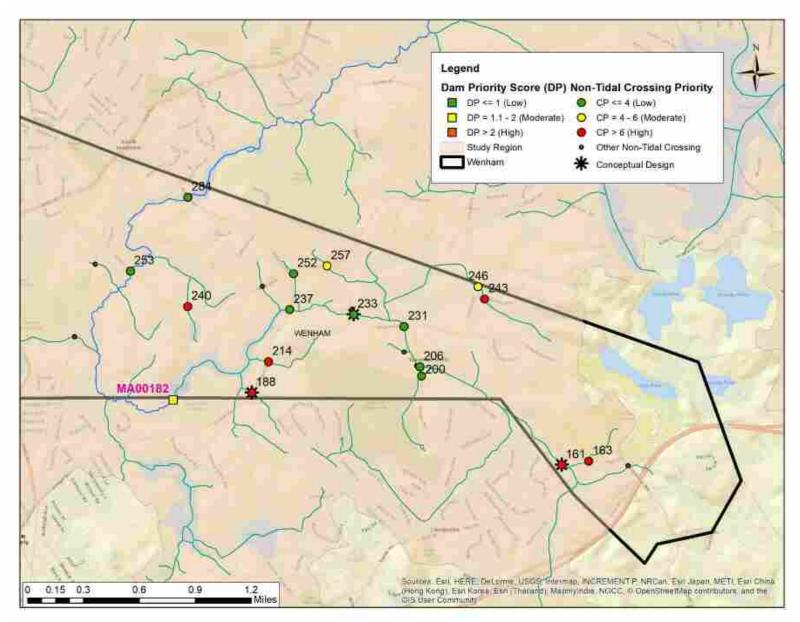



Figure 72. Prioritized dams and non-tidal crossings in the Great Marsh Study region within the eastern portion of the Town of Wenham, MA. Dam ID shown in pink and crossing ID shown in black.

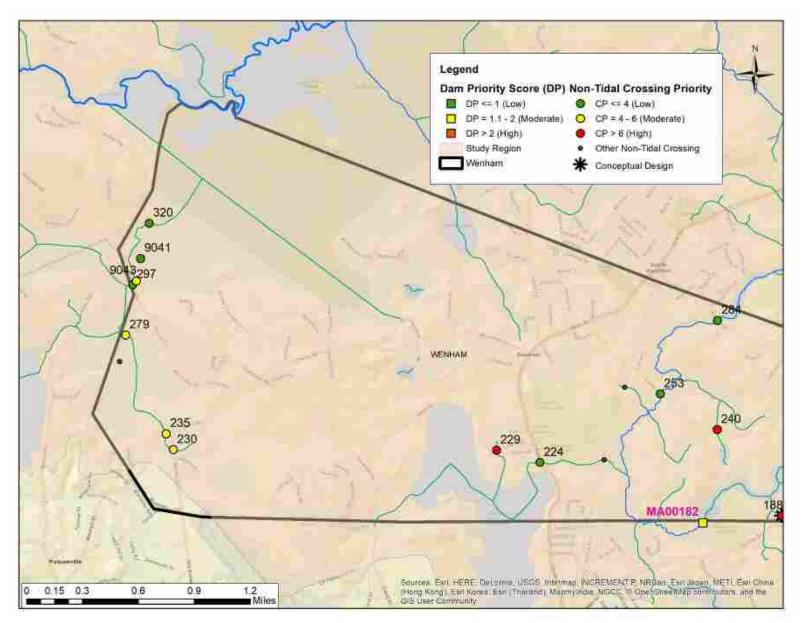



Figure 73. Prioritized dams and non-tidal crossings in the Great Marsh Study region within the western portion of the Town of Wenham, MA. Dam ID shown in pink and crossing ID shown in black.

Table 45. Dams in the portion of the Great Marsh study region within the Town of Wenham, MA prioritized by Dam Priority Score (DP).

|         | Priori | ty Rank |                       | Pri            | ority Scoring |            | Active/  |
|---------|--------|---------|-----------------------|----------------|---------------|------------|----------|
|         |        |         |                       | Infrastructure | Ecological    | Priority   | Priority |
| Dam ID  | Town   | Region  | Dam Name              | Risk (RI)      | Impact (EI)   | Score (DP) | Project  |
| MA00182 | NA     | NA      | Longham Reservoir Dam | 1              | 1             | 2          |          |

Table 46. Non-tidal crossings in the portion of the Great Marsh study region within the Town of Wenham, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted.

|          | Priori | ty Rank |                         |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|-------------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                         |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                         |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road                    | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 188      | 1      | 1       | Dodge Row               | Single Culvert   | 5.0            | 4.9          | 9.9      | Yes     |
| 240      | 2      | 72      | Larch Row               | Single Culvert   | 5.0            | 1.6          | 6.6      |         |
| 214      | 3      | 79      | Dodges Row              | Culvert          | 5.0            | 1.5          | 6.5      |         |
| 163      | 4      | 83      | Hull Street             | Single Culvert   | 5.0            | 1.5          | 6.5      |         |
| 229      | 5      | 125     | Lake Avenue             | Single Culvert   | 5.0            | 1.1          | 6.1      |         |
| 161      | 6      | 129     | Hull Street             | Culvert          | 4.0            | 2.1          | 6.1      | Yes     |
| 243      | 7      | 130     | Danes Way               | Single Culvert   | 4.6            | 1.5          | 6.1      |         |
| 9043     | 8      | 160     | Topsfield Nature Trail  | Bridge           | 4.6            | 1.1          | 5.7      |         |
| 279      | 9      | 161     | Danvers Rail Trail      | Bridge           | 5.0            | 0.6          | 5.6      |         |
| 246      | 10     | 166     | Rubbly Road             | Single Culvert   | 4.0            | 1.6          | 5.6      |         |
| 235      | 11     | 212     | Maple Street            | Multiple Culvert | 3.6            | 1.2          | 4.8      |         |
| 257      | 12     | 218     | Larch Row               | Single Culvert   | 2.6            | 2.0          | 4.6      |         |
| 230      | 13     | 219     | Burley                  | Multiple Culvert | 2.6            | 1.8          | 4.4      |         |
| 200      | 14     | 294     | Essex street            | Bridge           | 1.6            | 0.6          | 2.2      |         |
| 252      | 15     | 321     | Larch Row               | Single Culvert   | 0.0            | 1.9          | 1.9      |         |
| 231      | 16     | 433     | Grapevine Road          | Single Culvert   | 0.0            | 1.1          | 1.1      |         |
| 233      | 17     | 475     | Grapevine Road          | Multiple Culvert | 0.0            | 0.8          | 0.8      | Yes     |
| 284      | 18     | 478     | Walnut Street           | Bridge           | 0.0            | 0.8          | 0.8      |         |
| 9041     | 19     | 484     | Topsfield Nature Trail  | Multiple Culvert | 0.0            | 0.8          | 0.8      |         |
| 206      | 20     | 490     | Essex Street            | Bridge           | 0.0            | 0.7          | 0.7      |         |
| 320      | 21     | 493     | Topsfield Linear common | Single Culvert   | 0.0            | 0.7          | 0.7      |         |
|          |        |         |                         | Open Bottom      |                |              |          |         |
| 224      | 22     | 509     | Main St                 | Arch             | NA             | 0.7          | 0.7      |         |
|          |        |         |                         | Open Bottom      |                |              |          |         |
| 237      | 23     | 521     | Dodges Rowe             | Arch             | 0.0            | 0.6          | 0.6      |         |
| 253      | 24     | 532     | Larch Row               | Bridge           | 0.0            | 0.5          | 0.5      |         |
|          |        |         |                         | Open Bottom      |                |              |          |         |
| 297      | 25     | 580     | Topsfield Road          | Arch             | 0.0            | 0.2          | 0.2      |         |

## West Newbury

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of West Newbury. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>66</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. For more detail on prioritization methods as well as region-wide priorities see the main report<sup>67</sup>.

Approximately 3.6 square miles of the Town of West Newbury is located within the Great Marsh study region. This portion of the study watershed, located in the southern portion of West Newbury, is outside of the coastal zone so West Newbury is considered an inland municipality in our analysis (Figure 75). As an inland municipality, West Newbury does not have any tidal crossings or coastal stabilization structures. The portion of the study watershed within the West Newbury town limits has relatively few potential barrier sites, but we are including a town summary because we developed conceptual designs for two structures. Our analysis considered a total of 11 potential barrier sites (all non-tidal crossings), with structures confirmed and prioritized at 7 of those locations (Table 47). Our analysis did not identify any dams in the Town of West Newbury.



Figure 74. Outlet of road-stream crossing at Crane Neck Street, West Newbury (Site #1153).

The highest priority non-tidal crossing in the Town of West Newbury based on our screening analysis of ecological and infrastructure risk is a multiple culvert on Georgetown Road (Site #1155) that ranked the 33<sup>rd</sup> poorest in the region (Table 47). Poor scores in the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. The five highest priority sites all had an infrastructure risk (CRI) scores of 4 or greater. This indicates that they were not expected to pass flows associated with storms that have a 10% or higher chance of occurring on any given

<sup>&</sup>lt;sup>66</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>67</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

year. While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms. The five highest priority crossings in West Newbury are single or multiple culverts that could potentially be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance.

As part of this study, Meridian Associates, Inc. (MAI) developed conceptual design plans for the replacement of 2 non-tidal crossings with a structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. These designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

The Meridian design materials are located in Appendix 3.

- Supporting materials begin on page 180
- West Newbury designs begin on page 296

Table 47. Non-tidal crossings in the portion of the Great Marsh study region within the Town of West Newbury, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted.

|          | Priori | ty Rank |                   |                  | Prio           | rity Scoring |          |         |
|----------|--------|---------|-------------------|------------------|----------------|--------------|----------|---------|
|          |        |         |                   |                  |                | Ecological   | Crossing |         |
| Crossing |        |         |                   |                  | Infrastructure | Impact       | Priority | Concept |
| ID       | Town   | Region  | Road              | Structure Type   | Risk (CRI)     | (CEI)        | (CP)     | Designs |
| 1155     | 1      | 33      | Georgetown Road   | Multiple Culvert | 5.0            | 2.0          | 7.0      | Yes     |
| 1158     | 2      | 51      | Hilltop Circle    | Single Culvert   | 5.0            | 1.7          | 6.7      |         |
| 1124     | 3      | 105     | Crane Neck Street | Single Culvert   | 5.0            | 1.3          | 6.3      |         |
| 1153     | 4      | 115     | Crane Neck Street | Multiple Culvert | 4.0            | 2.2          | 6.2      | Yes     |
| 1171     | 5      | 137     | Georgetown Road   | Multiple Culvert | 5.0            | 0.9          | 5.9      |         |
| 1173     | 6      | 242     | Tewksbury Lane    | Bridge           | 3.0            | 0.8          | 3.8      |         |
|          |        |         |                   | Open Bottom      |                |              |          |         |
| 1159     | 7      | 438     | Middle Street     | Arch             | 0.0            | 1.1          | 1.1      |         |

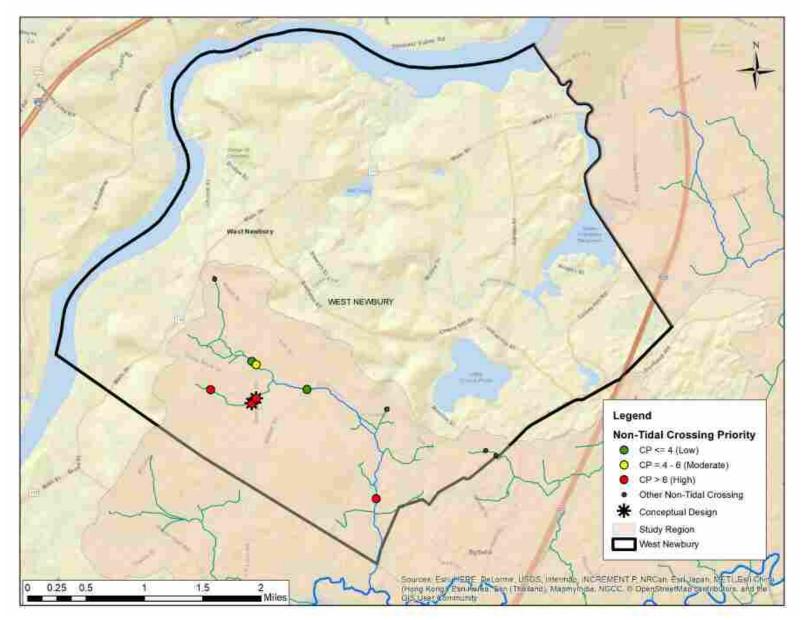



Figure 75. Map showing locations and prioritization scores for non-tidal crossings in the Great Marsh Study region within the Town of West Newbury, MA. Crossings with available conceptual designs are also noted.

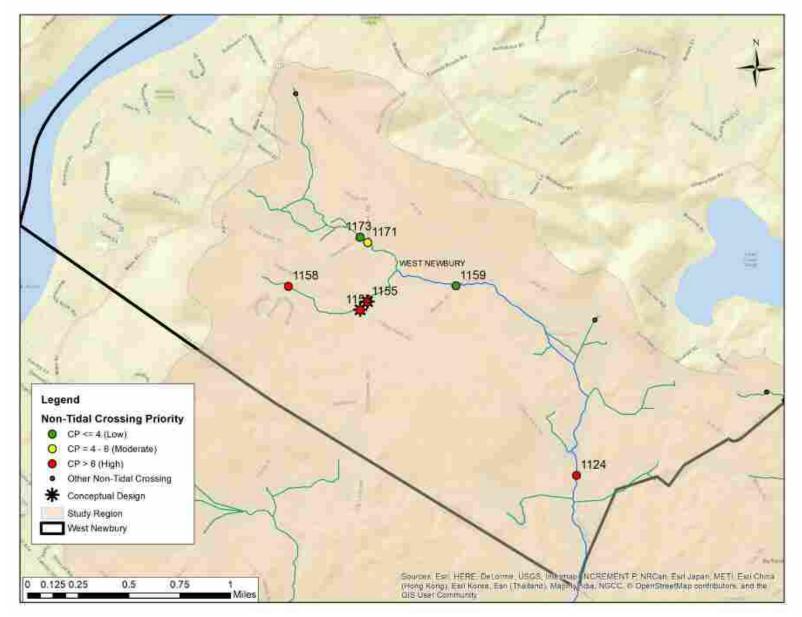



Figure 76. Closeup view of non-tidal crossings in the Great Marsh Study region within the Town of West Newbury, MA. Crossings with available conceptual designs are also noted.

# Wilmington

This section summarizes results of the Great Marsh Barriers Assessment (Barriers Assessment) analysis for the Town of Wilmington. This project was conducted by the Ipswich River Watershed Association as a component of the Great Marsh Resiliency Project. The Resiliency Project was funded by the National Fish and Wildlife

Foundation through the Hurricane Sandy Coastal Resiliency Competitive Grant Program and led by the National Wildlife Federation. The project included five separate sub-projects aimed at increasing the resiliency of the Great Marsh and PIE-Rivers Region<sup>68</sup>.

The Barriers Assessment inventoried, assessed, and prioritized human made structures that may impede flow, fluvial and coastal processes. These structures, collectively called barriers in the report include dams, non-tidal stream/river crossings, tidal crossings, and coastal stabilization structures. We assessed these structures based on both ecological impact and infrastructure risk using a combination of existing analyses, newly applied screening tools and local knowledge. For more detail on



Figure 77. Outlet of road-stream crossing at Ainsworth Road, Wilmington (Site #151).

prioritization methods as well as region-wide priorities see the main report<sup>69</sup>.



Figure 78. Outlet of road-stream crossing at Chestnut Street, Wilmington (Site #9).

The Town of Wilmington is located outside of the coastal zone and almost the entire town is located within the Great Marsh study region covering approximately 14.2 square miles (Figure 79). Wilmington includes the majority of the watersheds for the three principle headwater streams that give rise to the main stem of the Ipswich River. As an inland municipality, Wilmington does not have any tidal crossings or coastal stabilization structures. Our analysis considered a total of 35 potential barrier sites (all non-tidal crossings) with structures confirmed and prioritized at 31 of those locations (Table 48). Our analysis did not identify any dams in the Town of Wilmington.

The highest priority non-tidal crossing in the Town of Wilmington based on our analysis of ecological

and infrastructure risk is a single culvert on Ainsworth Road (Site #151) that also ranked 6<sup>th</sup> in the region (Table

<sup>&</sup>lt;sup>68</sup> The PIE-Rivers Region includes the 280 square mile combined watersheds of the Parker, Ipswich and Essex Rivers in northeastern Massachusetts. <u>http://www.pie-rivers.org/</u>

<sup>&</sup>lt;sup>69</sup> Full report document available at <u>http://www.pie-rivers.org/barriers/</u>

48). Poor scores in the screening tool generally indicate that structures are less likely to function properly during high flows (infrastructure risk) and may present significant barriers to wildlife migration and river function (ecological impact). Very often these dual impacts stem from crossings that are undersized relative to their upstream watershed and/or mismatched to the natural grade of the stream bed. Six of the 8 highest priority sites had infrastructure risk (CRI) scores of 4 or greater. This indicates that they were not expected to pass flows associated with storms that have a 10% or higher chance of occurring on any given year. While this doesn't indicate they will fail, it is an indicator that those crossings might be worth taking a closer look at to see how they are performing during storms. The four highest priority crossings in Wilmington are single culverts that could potentially be replaced with larger and more storm resilient/fish friendly crossings when it comes time to do routine maintenance.

As part of this study, Meridian Associates, Inc. (MAI) developed conceptual design plans for the replacement of 11 non-tidal crossings with a structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures<sup>70</sup>. The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. These designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

The Meridian design materials are located in Appendix 3.

- Supporting materials begin on page 180
- Wilmington designs begin on page 299

<sup>&</sup>lt;sup>70</sup> Sites #9 (Chestnut Street) and #28 (Burlington Avenue) were selected for design based on ecological score and best professional judgement regarding their likelihood to plug with debris. Sites #18 (Andover Street), #55 (Main Street) and #65 (Wildwood Street) were selected based on municipal input regarding maintenance and flooding concerns.

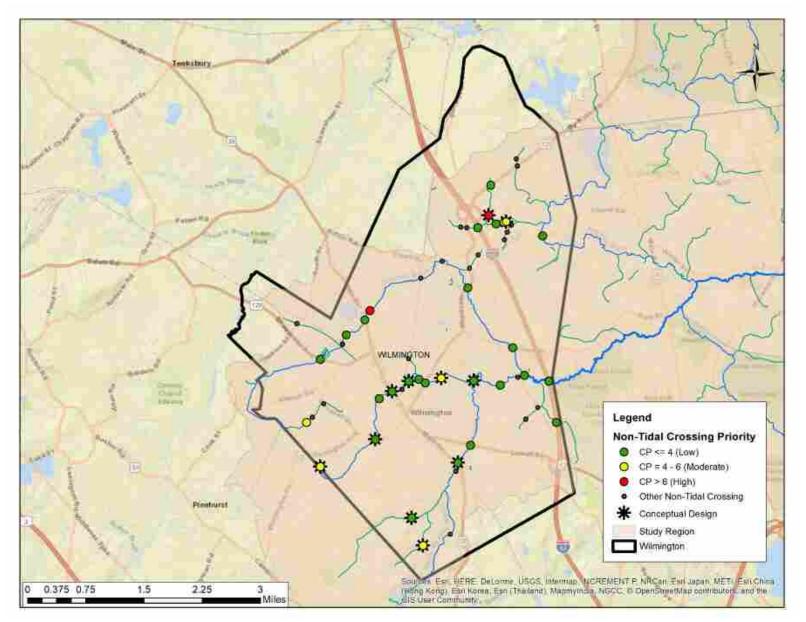



Figure 79. Map showing locations and prioritization scores for non-tidal crossings in the Great Marsh Study region within the Town of Wilmington, MA. Crossings with available conceptual designs are also noted.

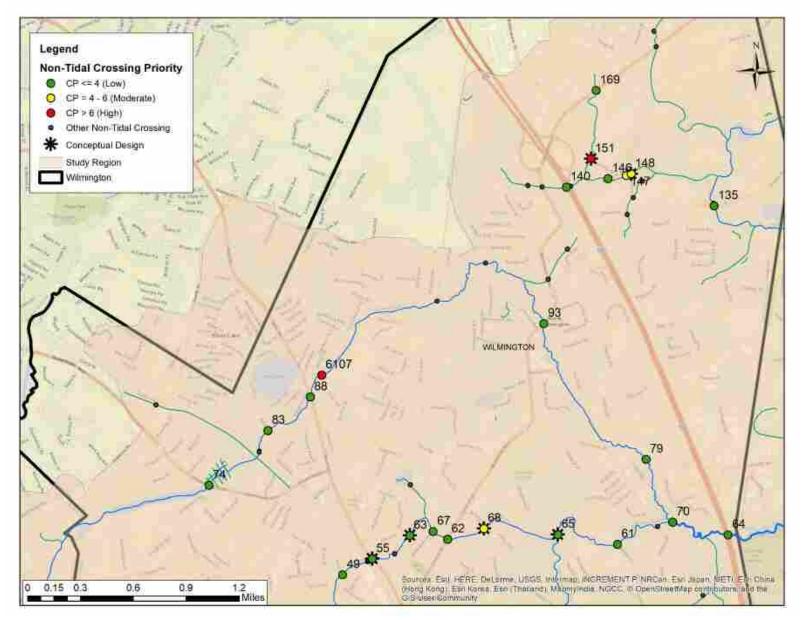



Figure 80. Non-tidal crossings in the Great Marsh Study region within the northern portion of the Town of Wilmington, MA. Crossings with available conceptual designs are also noted.

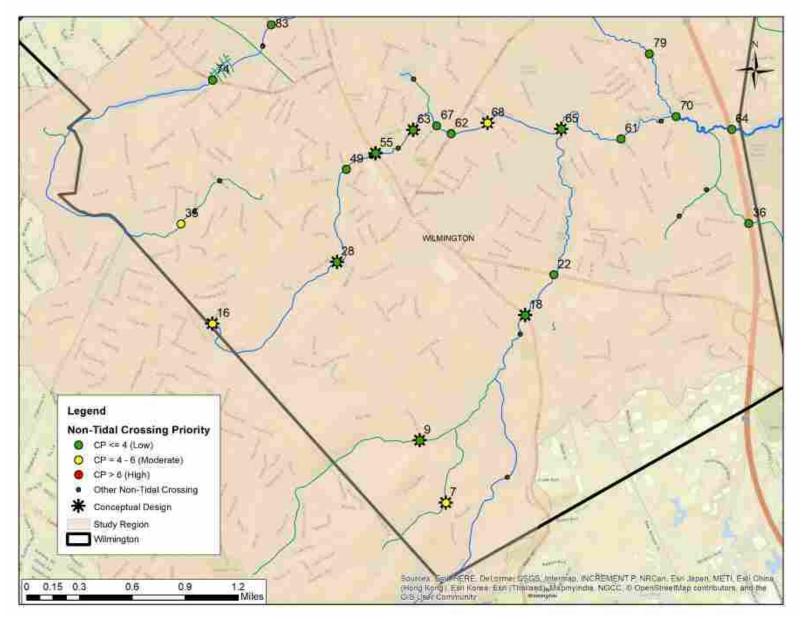



Figure 81. Non-tidal crossings in the Great Marsh Study region within the southern portion of the Town of Wilmington, MA. Crossings with available conceptual designs are also noted.

|                | Priority Rank |            |                                     |                            | Priority Scoring |            |            |                    |
|----------------|---------------|------------|-------------------------------------|----------------------------|------------------|------------|------------|--------------------|
|                | FIION         |            |                                     |                            | FIIO             | Ecological | Crossing   |                    |
| Creasing       |               |            |                                     |                            | Infrastructure   | Impact     | Priority   | Concert            |
| Crossing<br>ID | Town          | Region     | Pood                                | Structure Type             | Risk (CRI)       | (CEI)      | (CP)       | Concept<br>Designs |
| 151            | 1             | 6          | Ainsworth Road                      | Single Culvert             | 5.0              | 3.7        | 8.7        | Yes                |
| 6107           | 2             | 73         | Glen Road                           | Single Culvert             | 5.0              | 1.6        | 6.6        | 165                |
| 35             | 3             | 152        | Forest Street                       | Single Culvert             | 4.6              | 1.0        | 5.7        |                    |
| 16             | 4             | 152        | Beech Street                        | Single Culvert             | 5.0              | 0.7        | 5.7        | Yes                |
| 148            | 5             | 177        | Woburn Street                       | Multiple Culvert           | 2.2              | 3.2        | 5.4        | Yes                |
| 140            | 5             | 1//        | wobulli Street                      | Open Bottom                | 2.2              | 5.2        | 5.4        | res                |
| 147            | 6             | 188        | Ainsworth Road                      | Arch                       | 4.0              | 1.3        | 5.3        |                    |
| 7              | 7             | 215        | Chestnut Street                     | Single Culvert             | 0.0              | 4.6        | 4.6        | Yes                |
| 68             | 8             | 232        | Adams Street                        | Single Culvert             | 4.0              | 0.2        | 4.0        | Yes                |
| 63             | 9             | 252        | Clark Street                        | Multiple Culvert           | 0.0              | 2.9        | 2.9        | Yes                |
| 49             | 10            | 323        | Canal Street                        | Multiple Culvert           | 0.0              | 1.8        | 1.8        | res                |
| 135            | 10            | 323        | Salem Street/Rt 62                  | Bridge                     | 0.0              | 1.8        | 1.8        |                    |
| 74             | 12            | 326        | Shawsheen Avenue                    | Multiple Culvert           | 0.0              | 1.8        | 1.8        |                    |
| 140            | 12            | 332        | I-93                                | Single Culvert             | NA               | 1.8        | 1.8        |                    |
| 9              | 13            | 334        | Chestnut Street                     | Multiple Culvert           | 0.0              | 1.8        | 1.8        | Yes                |
| 169            | 14            | 344        | Route 125                           | Multiple Culvert           | 0.0              | 1.8        | 1.8        | res                |
| 83             | 15            | 345        | Wild Avenue                         | Multiple Culvert           | 0.0              | 1.7        | 1.7        |                    |
| 28             | 10            | 352        |                                     |                            | 0.0              | 1.7        |            | Voc                |
|                | 17            | 457        | Burlington Avenue<br>Andover Street | Multiple Culvert           | 0.0              | 1.0        | 1.6<br>1.0 | Yes                |
| 146<br>36      |               | 457        | I-93 SB                             | Multiple Culvert           | NA               | 0.8        | 0.8        |                    |
| 55             | 19<br>20      | 489        | Main Street/Route 38                | Single Culvert             | 0.0              | 0.8        | 0.8        | Vac                |
| 79             | 20            | 489<br>511 | Concord Street                      | Bridge<br>Multiple Culvert | 0.0              | 0.8        | 0.8        | Yes                |
| 18             | 21            | 528        | Main Street/Route 38                | Bridge                     | 0.0              | 0.6        | 0.6        | Yes                |
| 22             | 22            | 528        | Lowell Street                       | -                          | 0.0              | 0.5        | 0.8        | Tes                |
| 62             | 23            | 529        | Church Street                       | Bridge                     | 0.0              | 0.3        | 0.5        |                    |
| 93             | 24            | 560        |                                     | Bridge                     | 0.0              | 0.4        | 0.4        |                    |
| 65             | 25            | 565        | Middlesex Avenue                    | Multiple Culvert           | 0.0              | 0.3        | 0.3        | Vec                |
| 65             | 20            | 505        | Wildwood Street                     | Bridge                     | 0.0              | 0.3        | 0.3        | Yes                |
| 61             | 27            | 566        | Federal Street                      | Open Bottom<br>Arch        | 0.0              | 0.3        | 0.3        |                    |
| 70             | 27            | 568        | Woburn Street                       | Multiple Culvert           | 0.0              | 0.3        | 0.3        |                    |
| 64             | 28            | 574        | I-93                                | Single Culvert             | NA               | 0.3        | 0.3        |                    |
| 67             | 30            | 575        | Middlesex Avenue                    | Bridge                     | 0.0              | 0.3        | 0.3        |                    |
| 88             | 31            | 578        | Main Street/Route 38                | Bridge                     | 0.0              | 0.2        | 0.2        |                    |
| రర             | 1 31          | 578        | iviain Street/Route 38              | Blidge                     | 0.0              | 0.2        | 0.2        |                    |

Table 48. Non-tidal crossings in the portion of the Great Marsh study region within the Town of Wilmington, MA prioritized by Crossing Priority Score (CP). Sites with available conceptual designs as part of this project are noted.

## Appendix 3 – Road-Stream Crossing Designs

Properly sized, designed and installed crossings can reduce flooding and failure risk, extend structure longevity and improve river and stream conditions. As the final component of this project, Meridian Associates, Inc. (MAI) was contracted to develop conceptual designs for the replacement of a subset of selected high priority crossings with structures designed to increase aquatic connectivity and resilience to flooding. These structures were identified as high priorities based on a combination of their numeric priority scores, municipal input, structural condition and proximity to other priority structures. This task was focused almost exclusively on non-tidal crossings, but tidal crossings could be designed where site-specific conditions allowed the engineering team to do so.

The designs were developed using available site data including measurements, photos and field notes collected by IRWA as well as results from the NAACC database<sup>71</sup> and the Trout Unlimited Hydraulic Conductivity screening tool. Modeling effort field measurements collected by IRWA for the NAACC and screening tools. The proposed designs focused on improving hydraulic capacity and ecological connectivity and were intended to conform to the Massachusetts Stream Crossing Standards where applicable (Jackson et al., 2011). The designs were developed using available site data including field measurements collected by IRWA during the screening analyses. The designs provide a visual representation of the size and scale of a potential replacement structure that would better convey storm flows and meet ecological stream crossing standards at each site. These designs can provide a starting point to more easily incorporate resilient and long-lived structures into maintenance and replacement schedules. These plans can help with scoping, budgeting and fundraising associated with crossing upgrades.

In the following pages, please find materials provided by MAI explaining the methods they used to develop the designs as well as the purpose and limitations of these preliminary drawings. Also included is some information on additional tasks that would be included in the design process and photos and general pros and cons of some typical crossing types. The 103 preliminary designs are organized by municipality and Crossing ID#.

Structures designed to meet the Massachusetts Stream Crossing Standards meet requirements under the MA Wetlands Protection Act. The Massachusetts Division of Ecological Restoration (DER) has launched a program designed to provide technical and financial assistance to municipalities looking to replace road-stream crossings with structures that meet these standards. DER is building a library of technical assistance resources on their web page. They are also funding demonstration restoration projects around the commonwealth and will be holding training sessions beginning in 2018.

DER Culvert Replacement Website: <u>https://www.mass.gov/service-details/replace-a-culvert</u>

<sup>&</sup>lt;sup>71</sup> NAACC Crossing database available at: <u>www.streamcontinuity.org/cdb2</u>

## Table of Contents (Appendix 3)

| Meridian Supporting Materials | 182 |
|-------------------------------|-----|
| Andover Designs               | 191 |
| Boxford Designs               | 197 |
| Essex Designs                 | 213 |
| Georgetown Designs            | 217 |
| Hamilton Designs              | 222 |
| Ipswich Designs               | 226 |
| Middleton Designs             | 231 |
| Newbury Designs               | 235 |
| Newburyport Designs           | 248 |
| North Andover Designs         | 251 |
| Reading Designs               | 262 |
| Rowley Designs                | 264 |
| Salisbury Designs             | 271 |
| Topsfield Designs             | 277 |
| Wenham Designs                | 292 |
| West Newbury Designs          | 296 |
| Wilmington Designs            | 299 |

Meridian Supporting Materials

Supporting materials for preliminary designs provided by Meridian Associates, Inc. (8 pages)



July 17, 2017

Ipswich River Watershed Association 143 County Road, Ipswich, MA 01938 Attn.: Brian Kelder Restoration Program Manager

Dear Mr. Kelder,

The following materials were created by Meridian Associates, Inc. (MAI) in cooperation with the Ipswich River Watershed Association (IRWA). This package includes initial conceptual design sketches developed by MAI for replacement of existing culverts, with structures designed to meet the Massachusetts Stream Crossing Standards. The locations were identified by IRWA as high priority for upgrade based on their regional analysis of ecological connectivity and infrastructure risk at road-stream crossings. In addition, MAI has provided a list of possible next steps that can be taken to continue the culvert replacement process from initial land surveying through final design and permitting, as well as a brief list of "pros and cons" of the different culvert types that have been proposed.

The concept sketches are intended for use by municipalities and their Public Works departments as tools for evaluating the feasibility of replacing the existing culverts highlighted herein, as well as for prioritizing any possible stream crossing upgrades in municipalities where multiple crossings have been chosen. The sketches included here are initial concepts based on available information only, and any final crossing designs may vary greatly based on the results of further analysis, design, permitting and cost considerations. These sketches are intended to serve as a starting point to begin the process of scoping project scale, developing cost estimates and evaluating other considerations prior to entering a more intensive design phase.

Criteria used by MAI in selection of proposed crossing structures include the Massachusetts Stream Crossing Standards, specific site constraints including the obvious presence of existing utilities, location of crossing, available bankfull width (upstream and downstream), any vertical dimensions provided by IRWA during field surveys, overall location of crossing, and surrounding topography in the area of the crossing.

Data used in creation of the concept sketches includes, but was not limited to, information provided by IRWA to MAI. This information included field notes, photos, bankfull width estimates (upstream and downstream), vertical measurements on both ends of culvert from existing road surface, field notes describing any existing structures, and geographical location information in the form of an interactive ArcGIS map. MAI took this information, combined with base plans derived from local GIS resources (when available) and Google Earth, to



construct these concepts. <u>No formal land surveying was performed in the field by MAI. These sketches are therefore approximate in nature</u>.

These plans, as stated above, are to be used as tools for evaluating possible crossing upgrades. They are not intended in any way to be substituted for design plans, and are not to be used for construction. As stated in the 'Next Steps' document included, any crossing replacement will need a formal design and hydrologic analysis performed by a registered professional Engineer.

Sincerely,

MERIDIAN ASSOCIATES, INC.

Christopher A. Ryan Senior Project Engineer

P:\5900\ADMIN\Letters\_Memos\Cover Letter.doc



### **IRWA Stream Crossing Project**

### Possible Next Steps

Distribute concept sketches and report with cover letters to DPW Directors, Town Planners, Conservation Agents, City Council members, or other decision makers in the affected towns to create awareness and possible opportunities for linkage with projects that may be in the pipeline already. A good example would be, say, a subdivision or other large site design being proposed near one of the crossings, and the Planning Board could use the opportunity to link a stream crossing upgrade as a condition for granting a Special Permit for the project, etc.

Collect land survey data in area of crossing to be upgraded. May also require survey of roadway approaches if determined that roadway vertical alignment will be affected by crossing design. Survey data needing collection would include detail of existing stream bed and crossing components, roadway approaches on both sides of crossing area, as well as areas directly adjacent to stream in both upstream and downstream directions. Research on existing utilities would need to be performed, and any surface utility components and markings would need to be located. Exact limits of ground survey would need to be determined in field prior to start, since each site varies.

Research any subsurface utilities in the area of crossing that could potentially impact a proposed design. Engage all utility providers if any relocation is being proposed, since major utility relocations may pose significant issues with a proposed crossing being able to meet the stream crossing standards. Any known utility lines would need to be marked on the ground to allow for collection during land survey process.

If a crossing is being proposed under a state road, MassDOT would need to be engaged during the planning process to determine any agency requirements. This will affect the entire process from land survey, to design and permitting.

Determine any local permitting requirements for a new crossing. Local Public Works department would need to be engaged, along with Conservation, Fire, Water and Public Safety departments to assess any impacts and possible special requirements required, depending on location.

Conduct formal analysis of contributing hydrology to evaluate any potential negative downstream impacts.

Full design of new crossing with design plans and specifications. If MassDOT is involved, design and specifications must conform to agency standards. Again, this may or may not include design changes to existing roadway. New crossing design should meet stream crossing standards. If all standards cannot be met due to site constraints, the standards should be met to the greatest extent possible.



### Pros and Cons of Crossing Types

- 3 sided concrete box
  - Good longevity with low maintenance
  - Can be custom fabricated for specific location requirements
  - Allows for wider span than elliptical metal arch in most locations
  - Can incorporate wing walls for slope retention, and guard rails/sidewalk when needed
  - Good for crossings under roadway
  - Relatively quick installation once components are on site
  - Stream bed can be left relatively untouched during installation
  - More expensive than elliptical metal arch
  - Requires more excavation and longer potential road closure time
  - o Relocated utilities would have to be placed on top of structure
- 4 sided concrete box
  - o Good longevity with lower maintenance requirements than elliptical metal arch
  - o Allows for wider spans in most locations
  - Can incorporate wing walls into structure and guard rail/sidewalk on top of structure
  - Relocated utilities can be placed over or under structure
  - Might choose over 3 sided in cases with poor substrate for footings
  - Higher cost than metal arch solution
  - Existing stream bed would need to be eliminated along length of structure
- Elliptical arch
  - Inexpensive relative to concrete structures
  - Less overall excavation required
  - Good for smaller crossings in areas of tight site restrictions
  - Shorter road closure time required during installation
  - Custom fabrication available
  - Various standard sizes available should allow faster delivery to site
  - Shorter life span than most concrete structures
  - If longer crossing length required, concrete may be preferable due to height requirement of arch, and may affect ability to meet crossing standards
- Open bottom Arch
  - o Can consider using stem footings to keep metal out of abrasion zone
  - o Less expensive compared to precast concrete arch structure
  - Allows stream bed to remain mostly undisturbed
  - o Good in areas of high vertical clearance to allow for wildlife passage
  - Possible shorter lifespan
  - More frequent maintenance may be required



- Bridge span (metal)
  - In situations where road can be closed for a period of time, can consider using GRS abutments to reduce cost
  - Can be more aesthetically pleasing than concrete structure in locations of high visibility
  - Various design types available
  - Can provide wide crossing area for various types of wildlife passage
  - o Sidewalks, guard rails and street lighting can be incorporated into structure
  - More likely to have higher maintenance costs vs precast span over time
  - High purchase and installation costs
  - More excavation and longer road closure time required for installation

### Example Crossing Photos



Figure 1. 3-sided Box culvert





Figure 2. 4-sided box culvert.



Figure 3. Elliptical arch culvert





Figure 4. Open bottom arch culvert (metal)

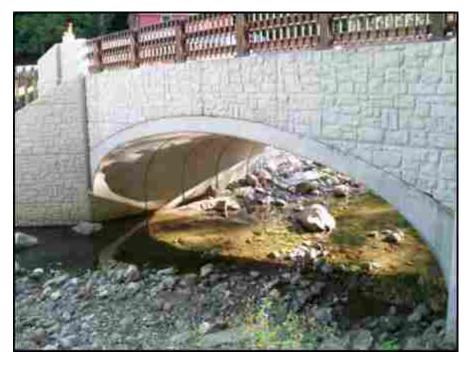
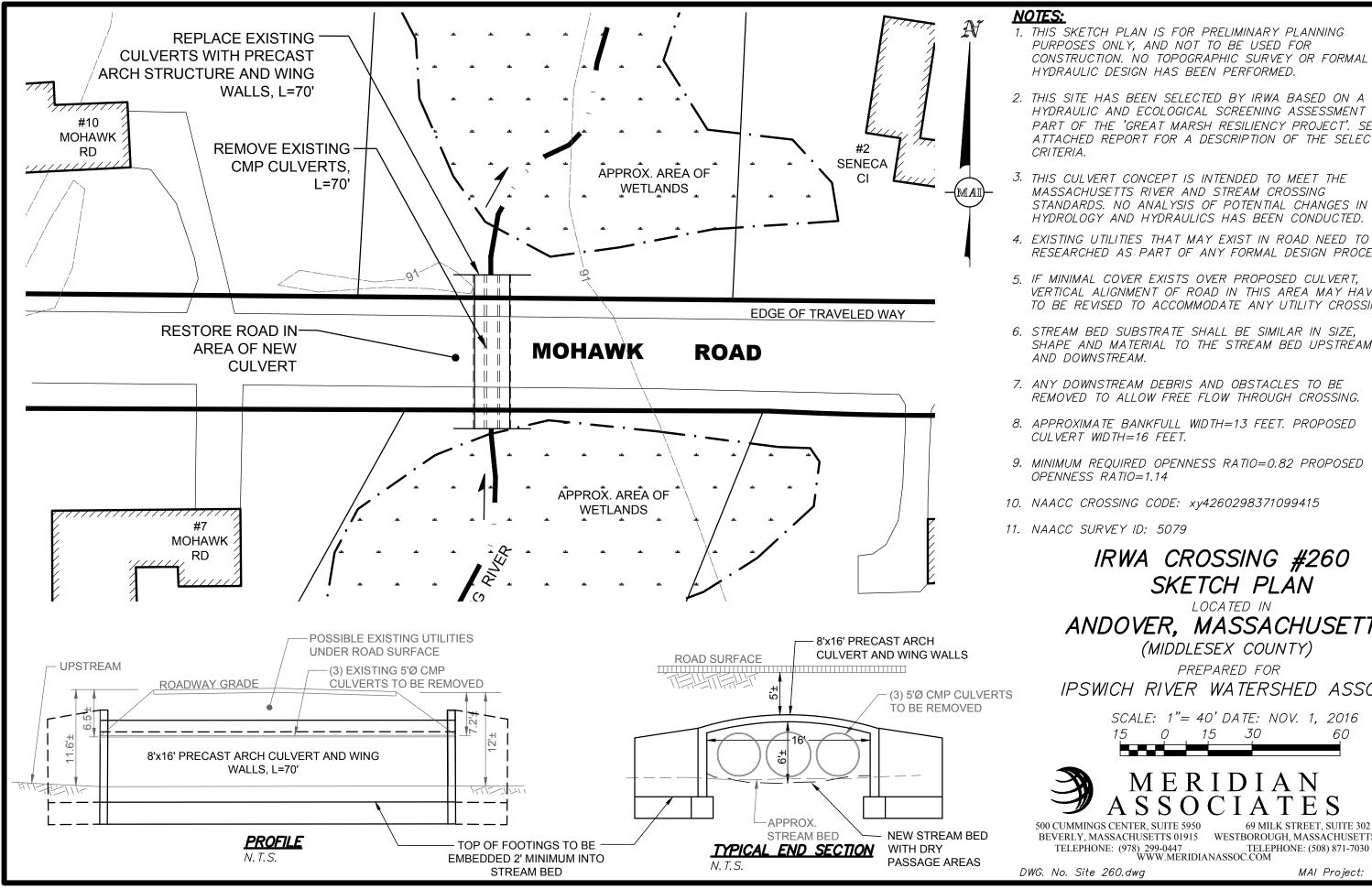



Figure 5. Open bottom arch culvert (concrete)




Figure 6. Steel bridge span

## P:\5900\ADMIN\Letters\_Memos\IRWA next steps rev4.doc

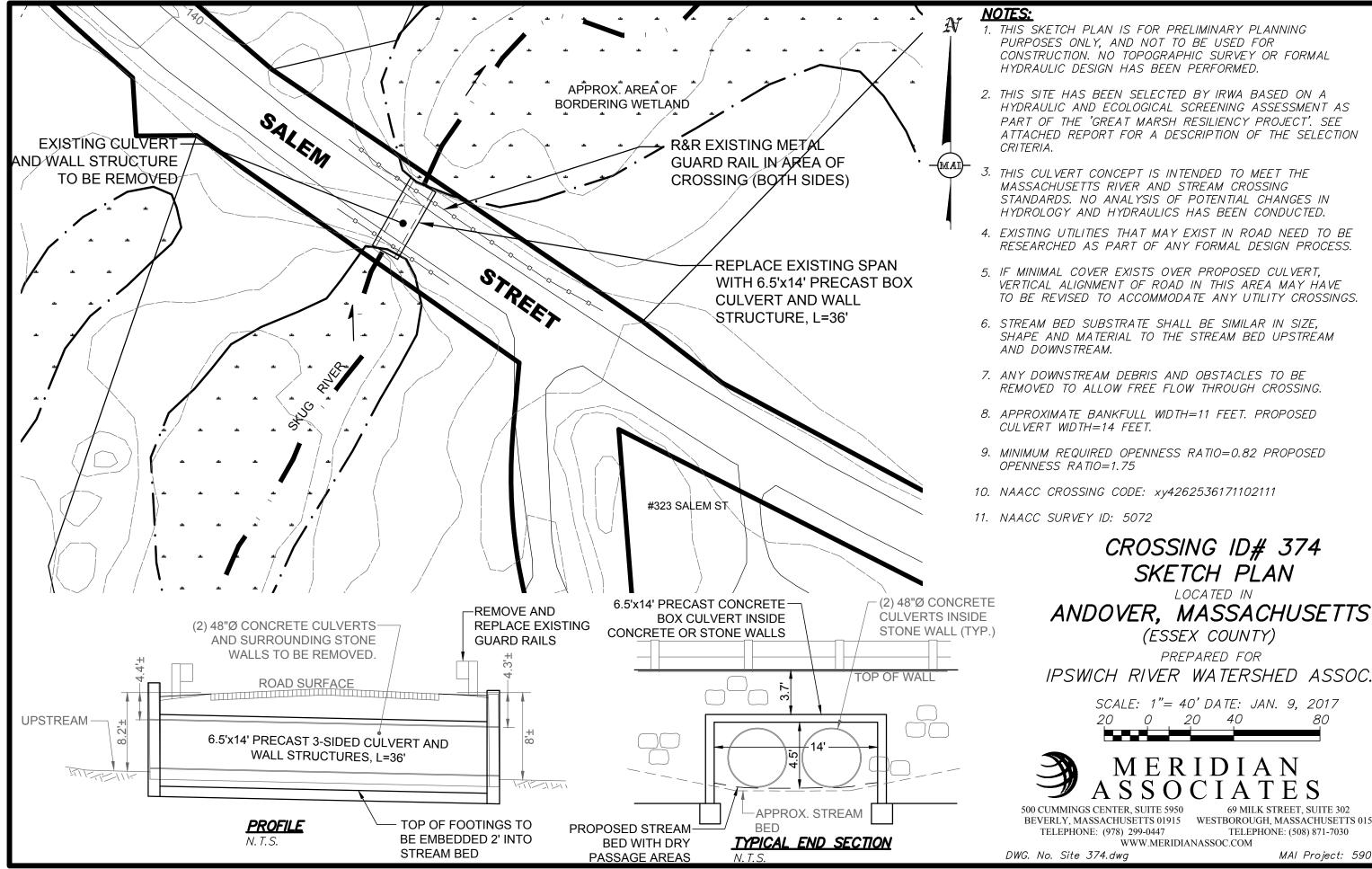
### Andover Designs

Conceptual designs for the replacement of select road-stream crossings in the Town of Andover, MA

5 pages

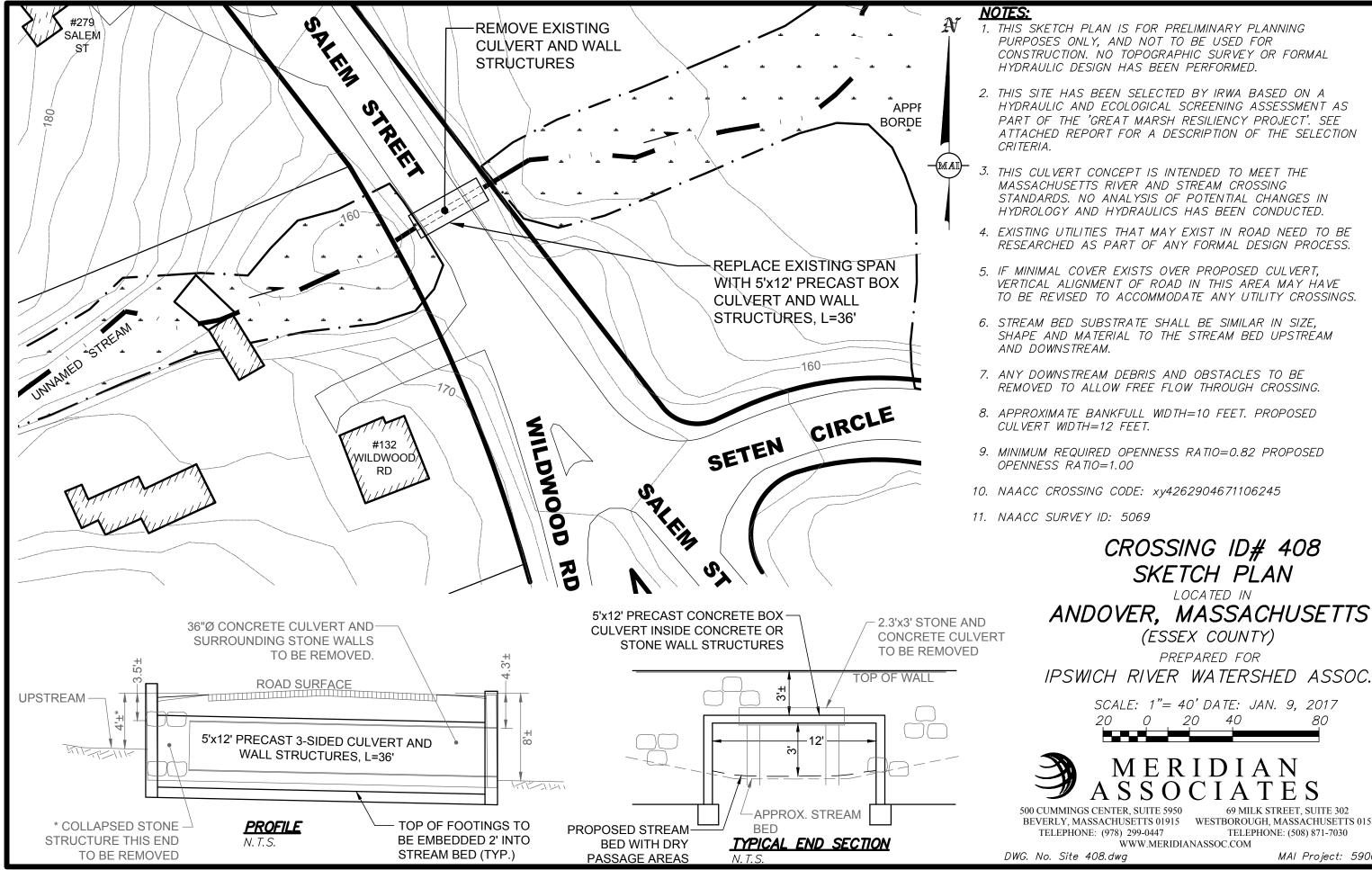


HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION


4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

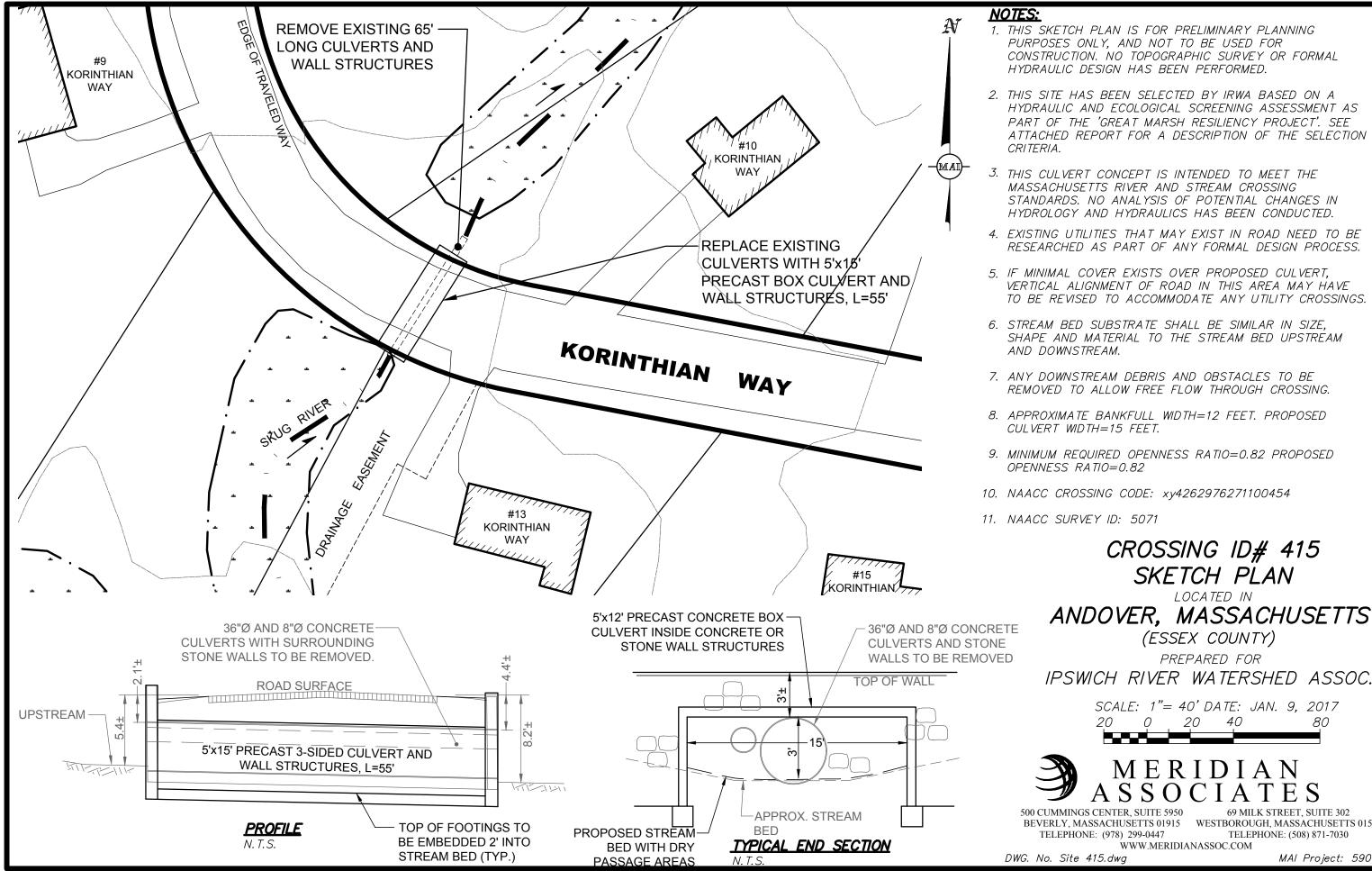
VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

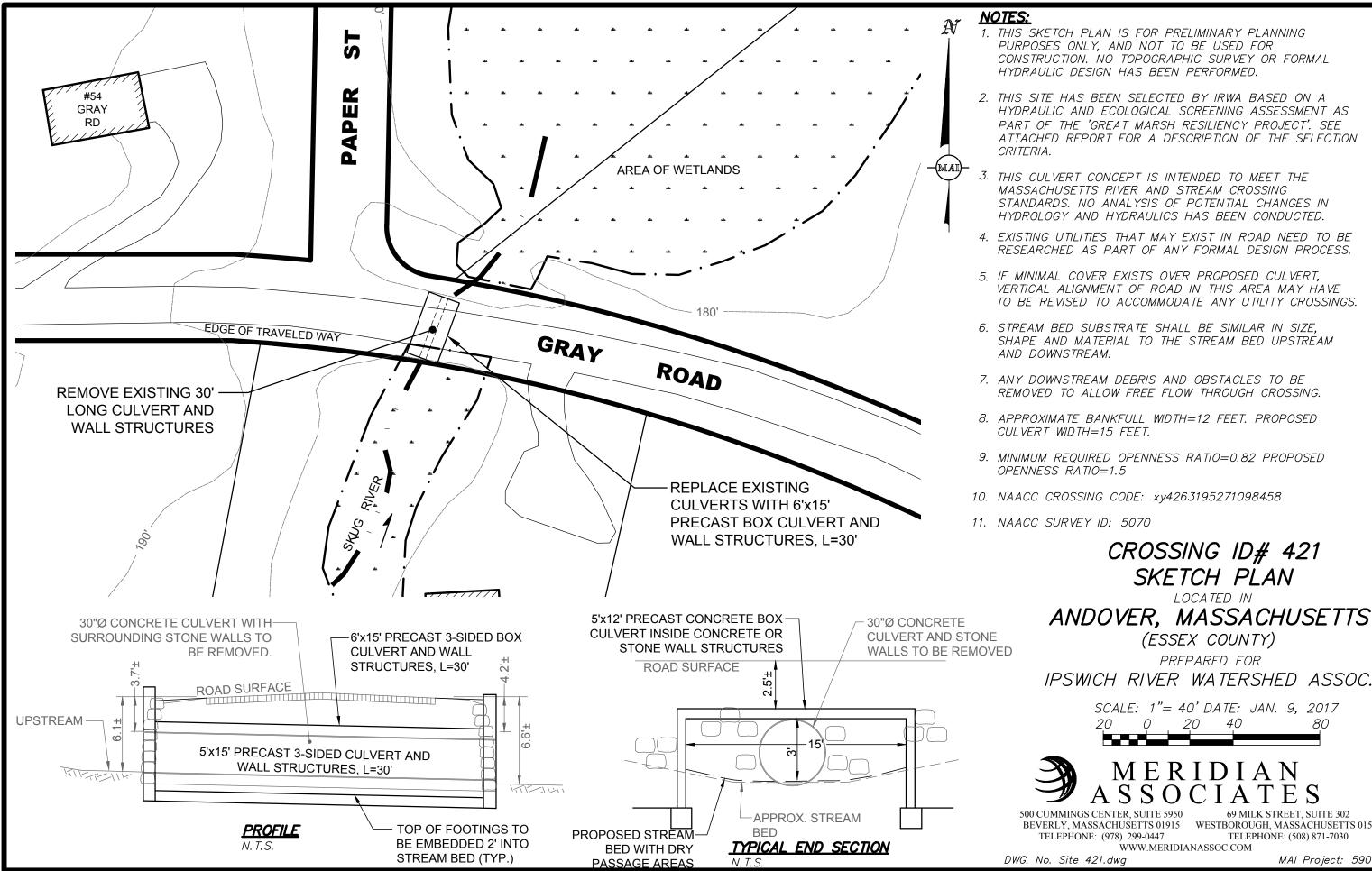

# IRWA CROSSING #260 ANDOVER, MASSACHUSETTS IPSWICH RIVER WATERSHED ASSOC. SCALE: 1"= 40' DATE: NOV. 1, 2016 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM




SCALE: 1"= 40' DATE: JAN. 9, 2017

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030



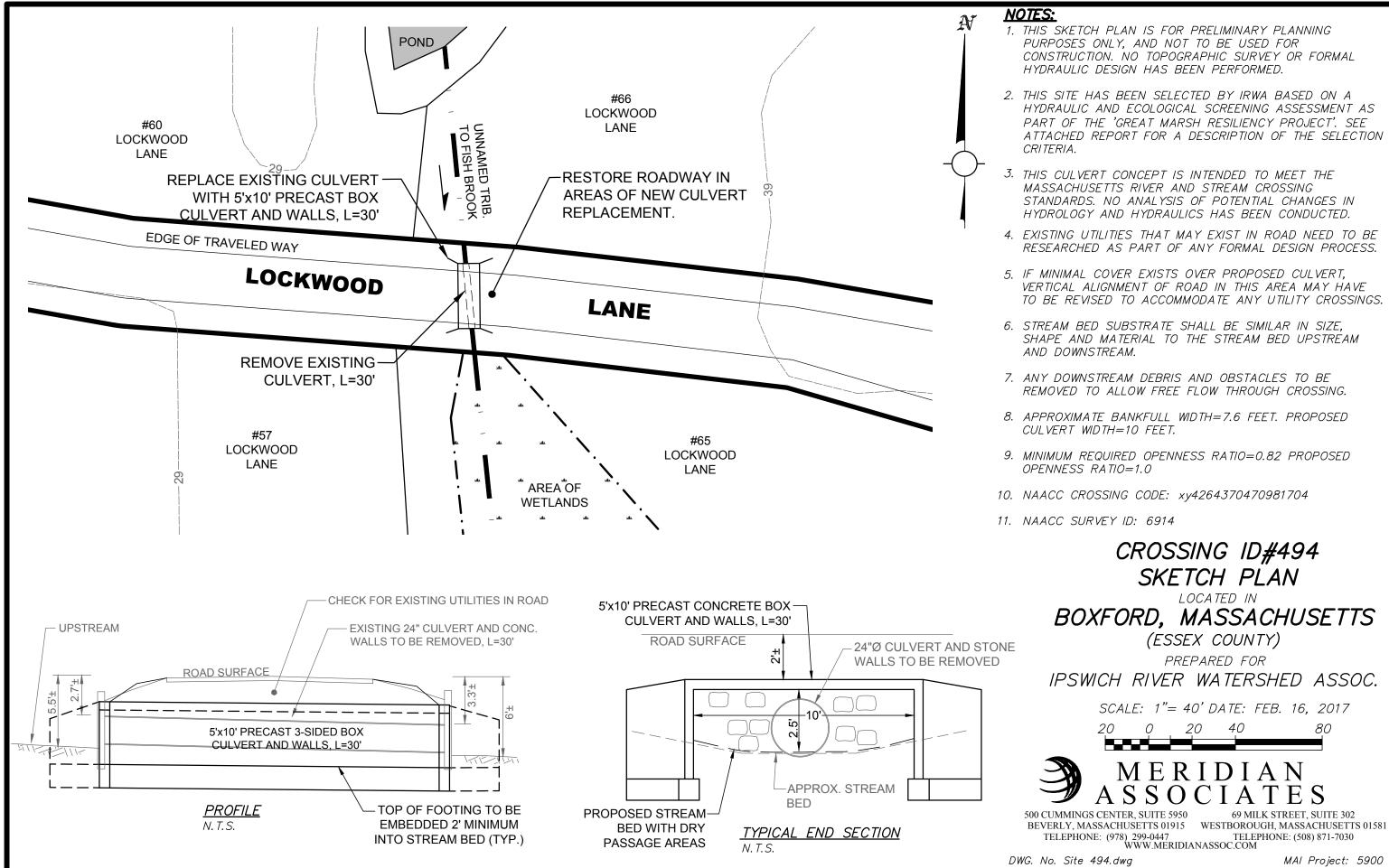

SCALE: 1"= 40' DATE: JAN. 9, 2017

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030



BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030




SCALE: 1"= 40' DATE: JAN. 9, 2017

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030

### Boxford Designs

Conceptual designs for the replacement of select road-stream crossings in the Town of Boxford, MA

15 pages

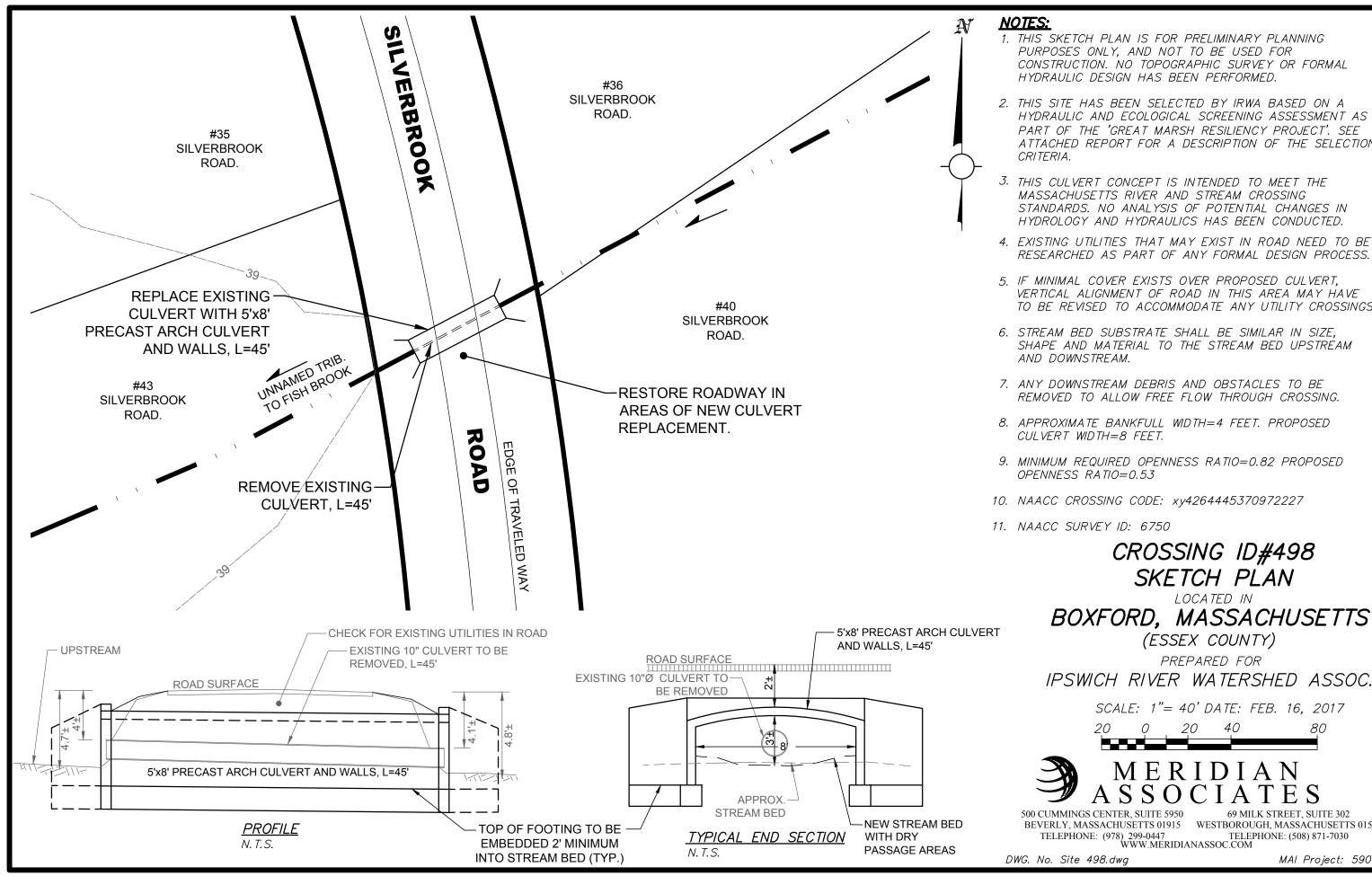


HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM


BOXFORD, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 16, 2017

80

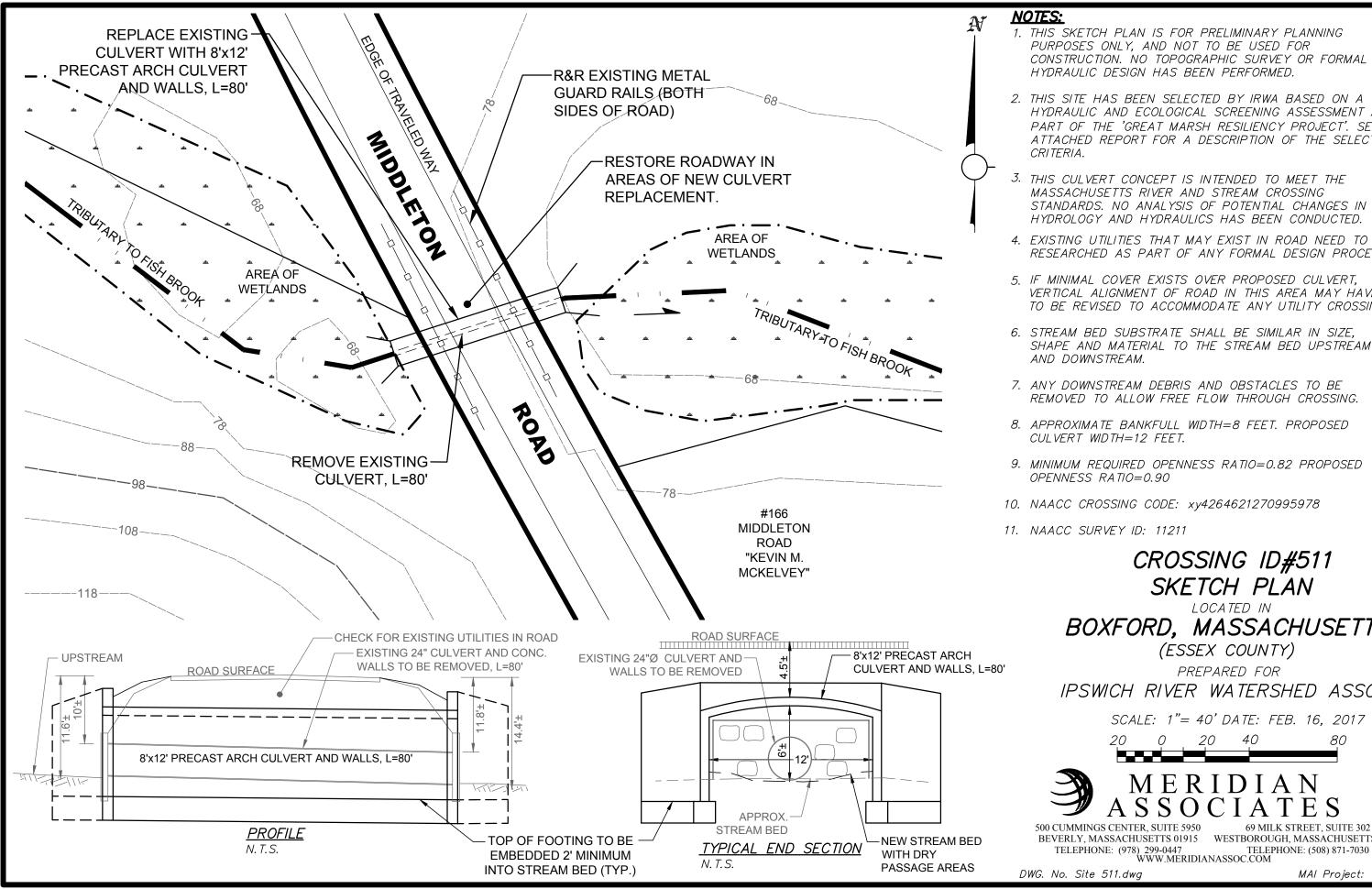
TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

BOXFORD, MASSACHUSETTS

SCALE: 1"= 40' DATE: FEB. 16, 2017

80

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

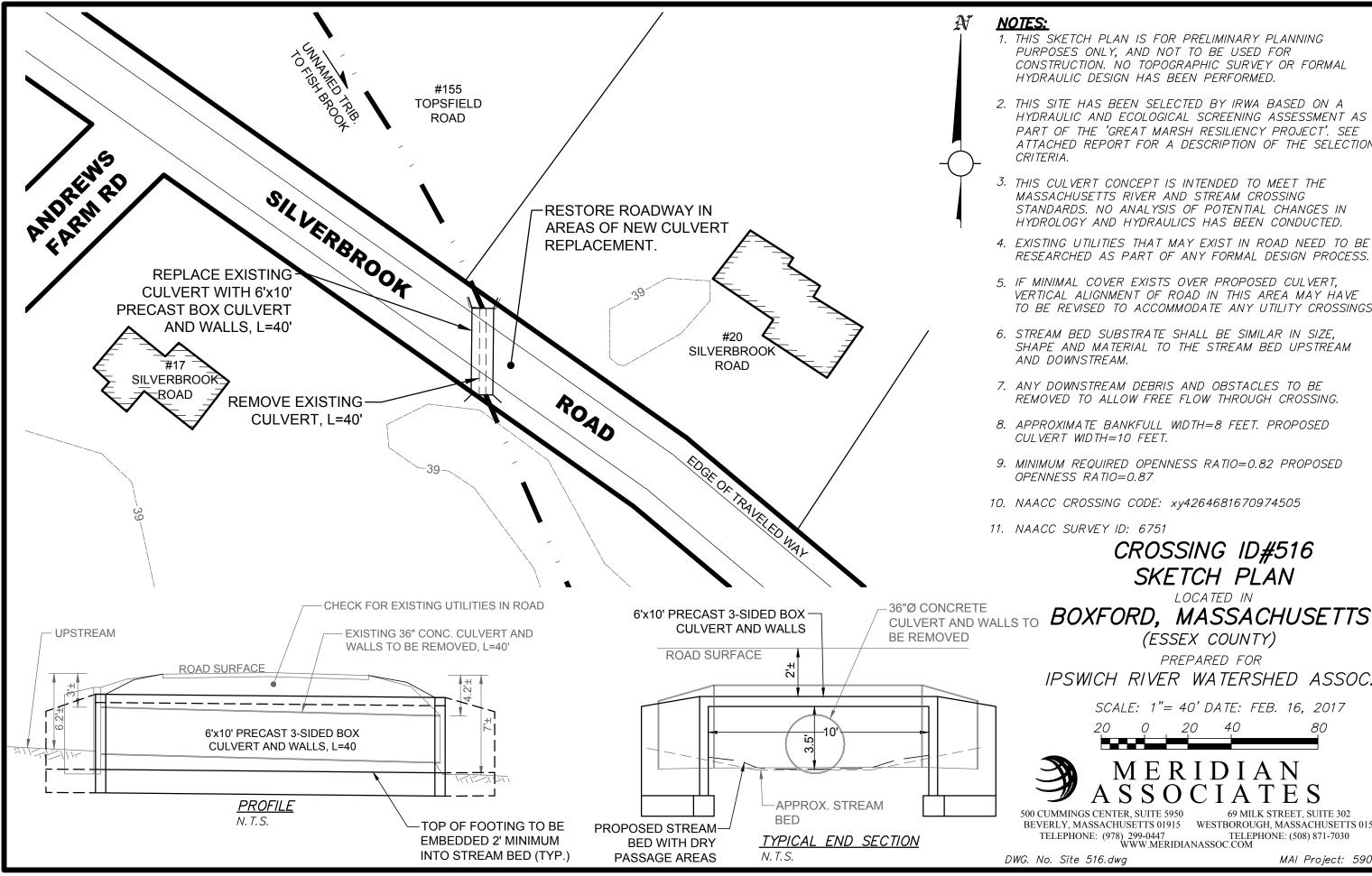


HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM


# BOXFORD, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 16, 2017

80

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

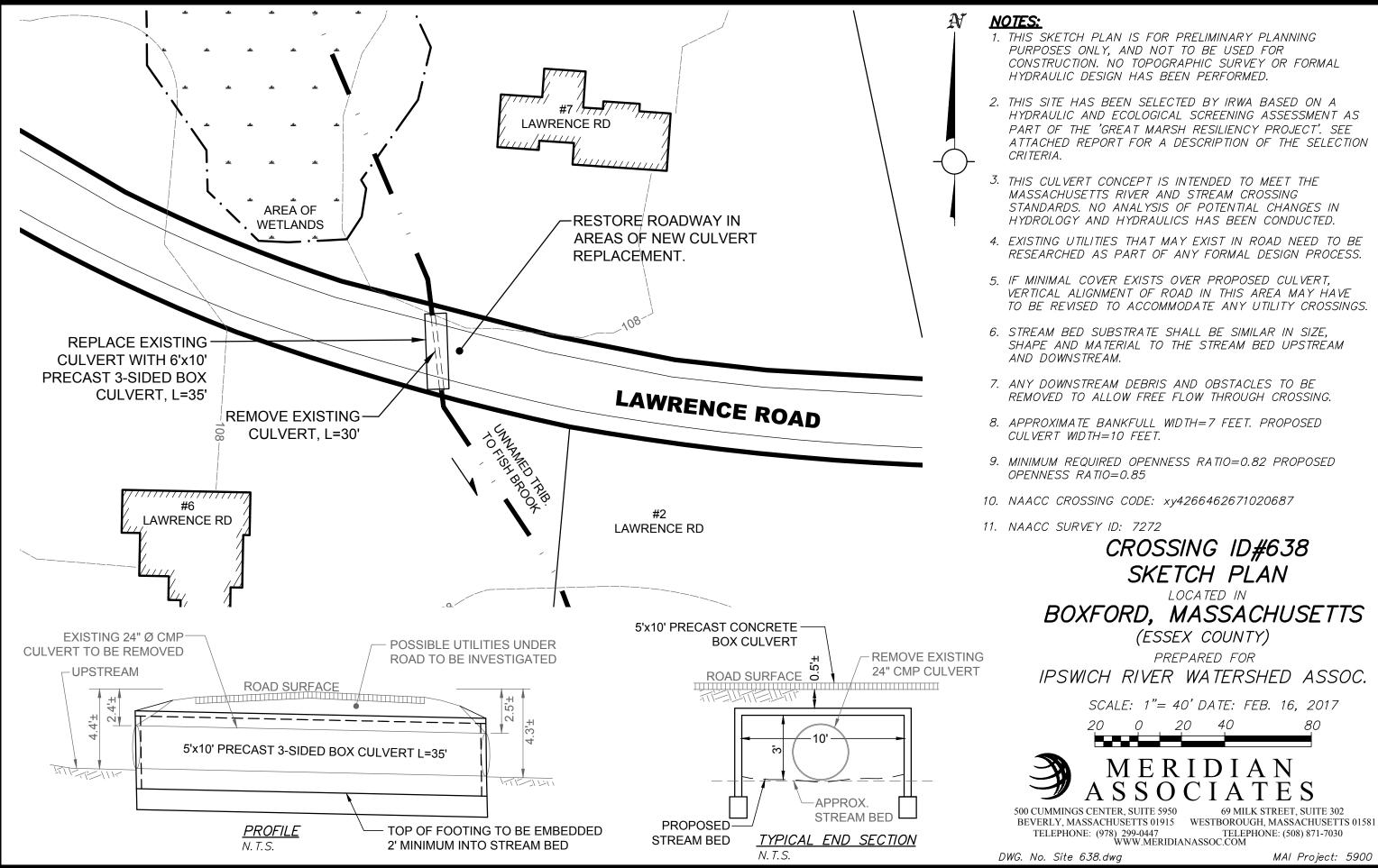


HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

IPSWICH RIVER WATERSHED ASSOC.

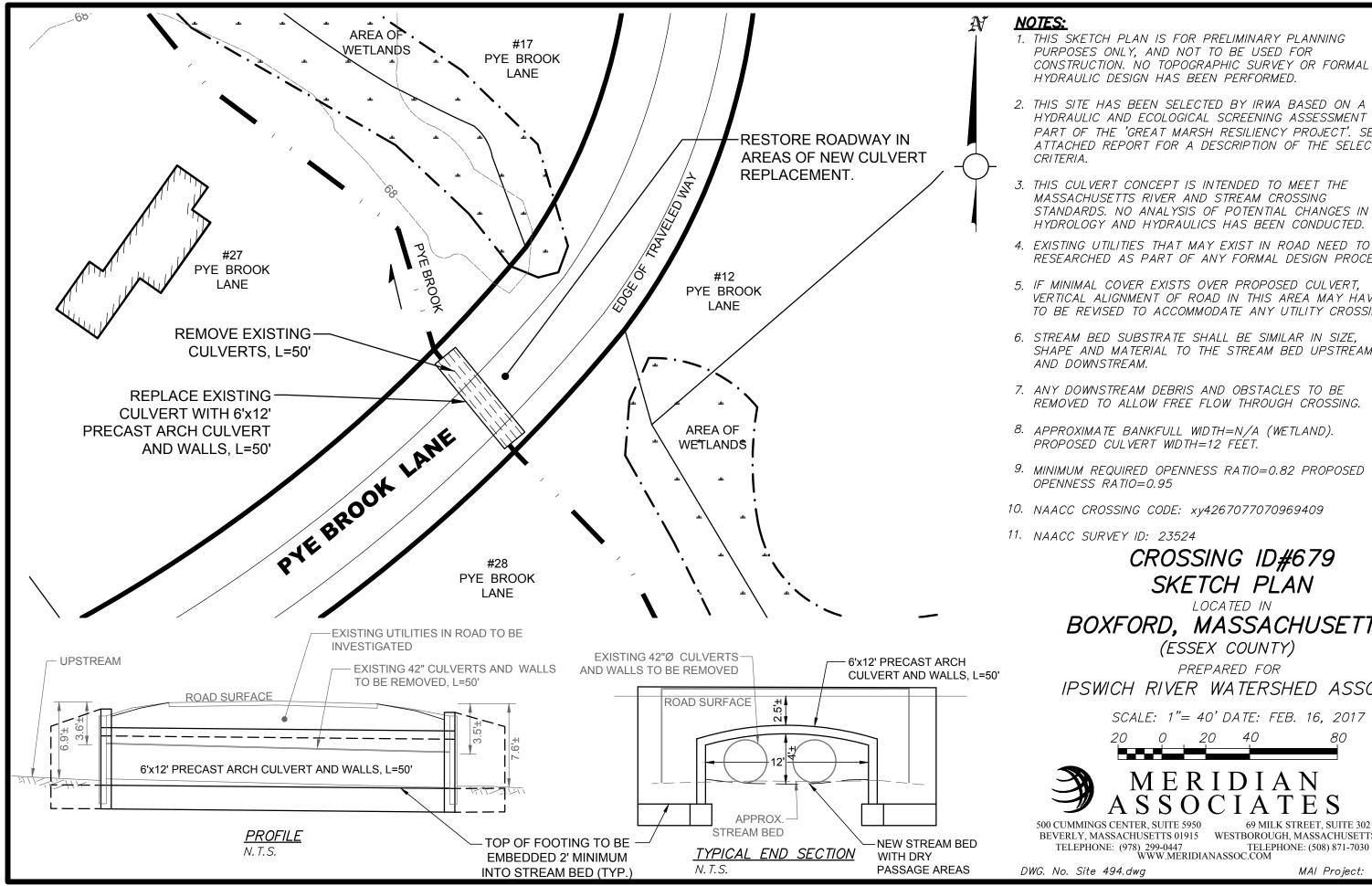

SCALE: 1"= 40' DATE: FEB. 16, 2017

80

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



SCALE: 1"= 40' DATE: FEB. 16, 2017




ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

BOXFORD, MASSACHUSETTS

SCALE: 1"= 40' DATE: FEB. 16, 2017

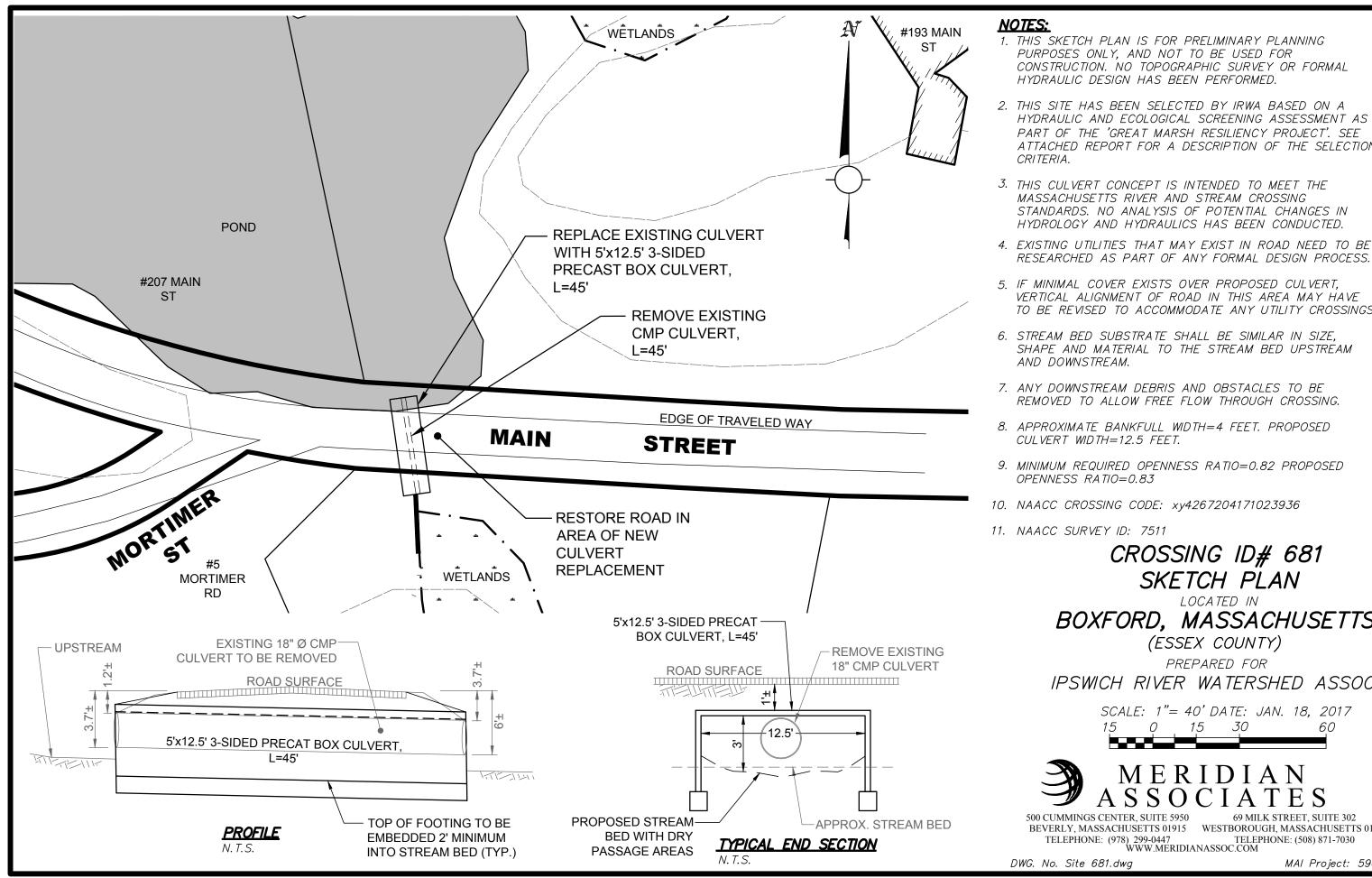


HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM


BOXFORD, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 16, 2017

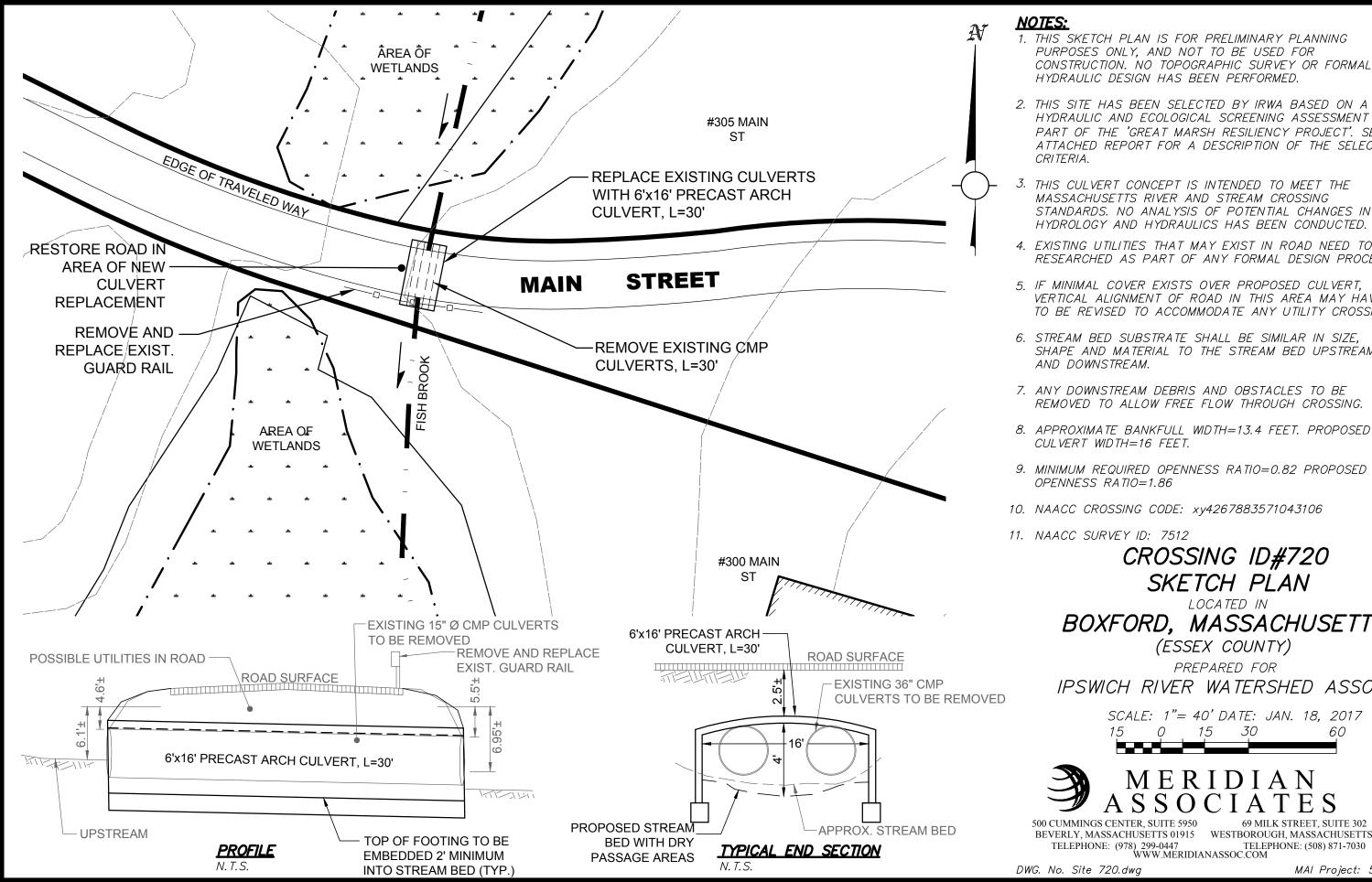
80

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.


VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

BOXFORD, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: JAN. 18, 2017 60

69 MILK STREET, SUITE 302 BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



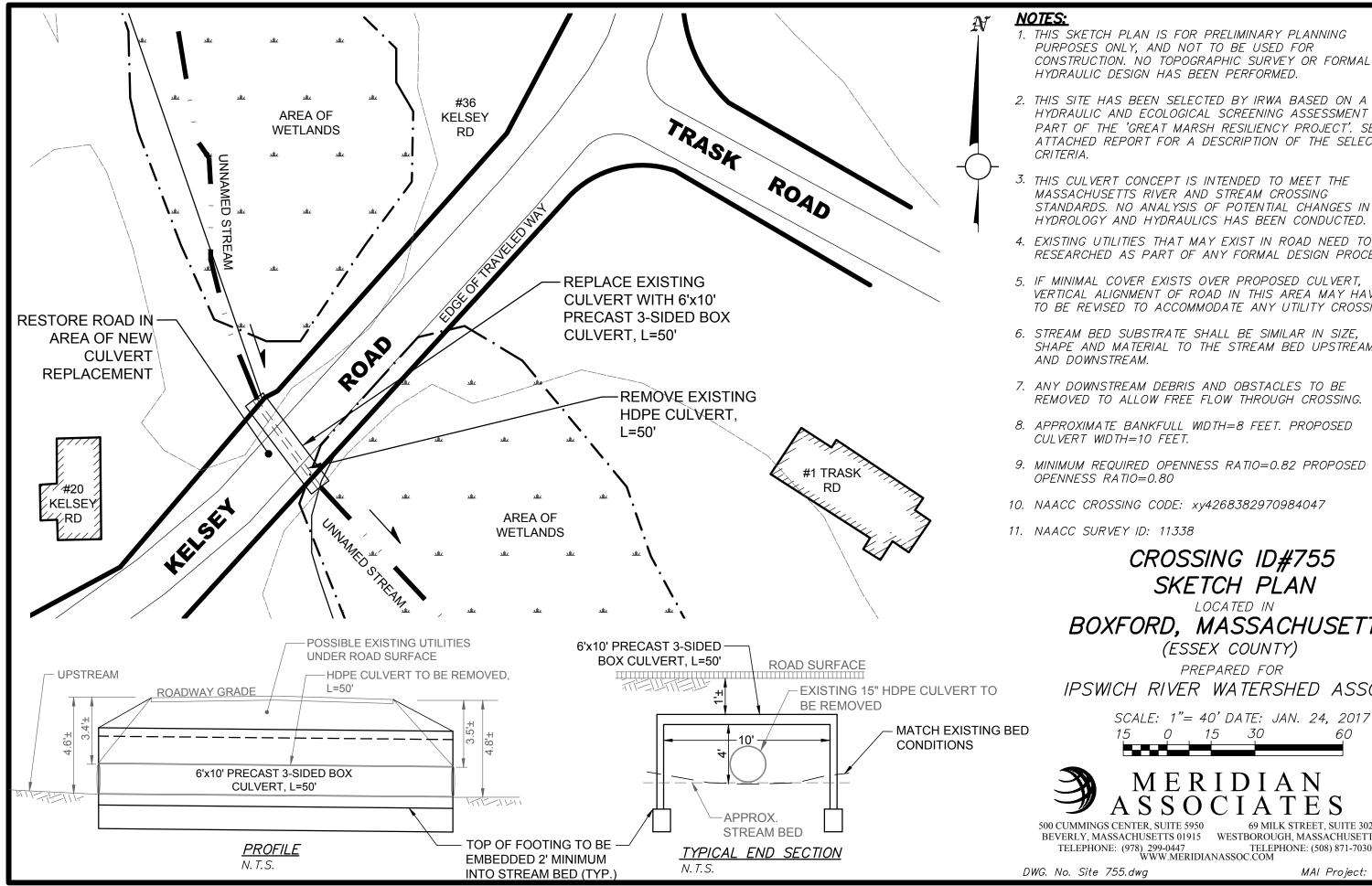
HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN HYDROLOGY AND HYDRAULICS HAS BEEN CONDUCTED.

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM


REMOVED TO ALLOW FREE FLOW THROUGH CROSSING.

BOXFORD, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: JAN. 18, 2017 60

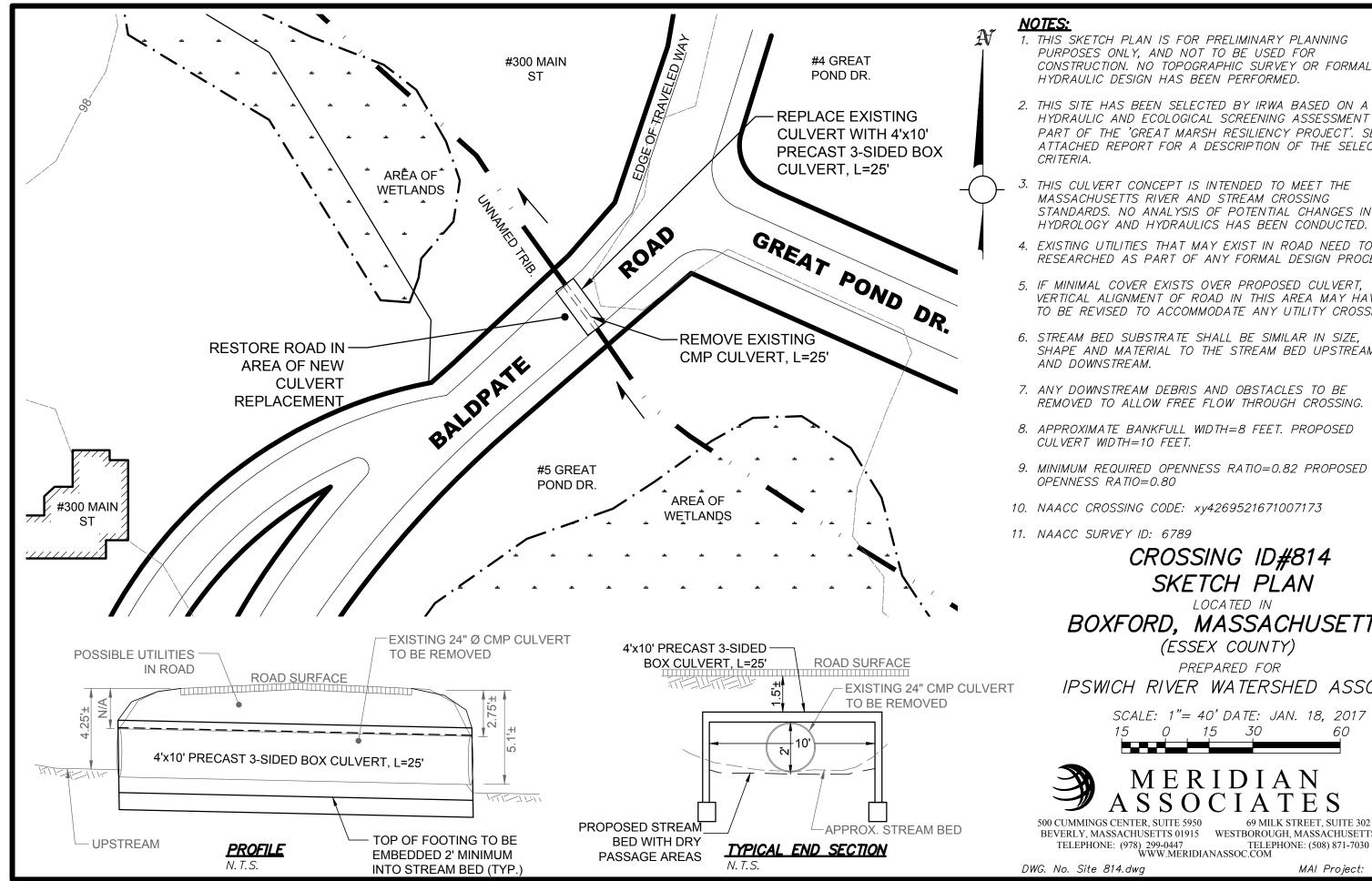
BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

BOXFORD, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: JAN. 24, 2017 60

69 MILK STREET, SUITE 302 BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



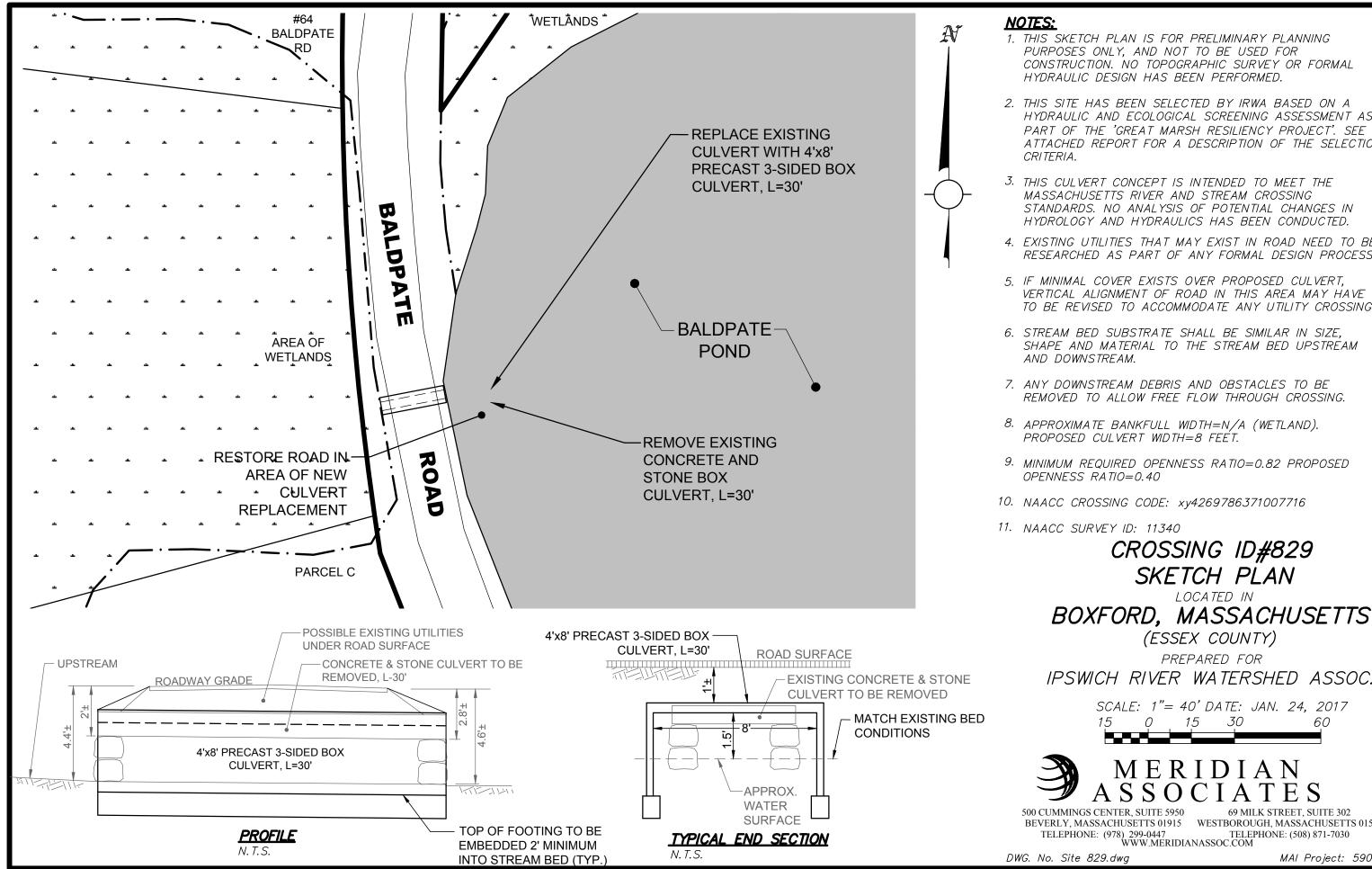
HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM


REMOVED TO ALLOW FREE FLOW THROUGH CROSSING.

BOXFORD, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: JAN. 18, 2017 60

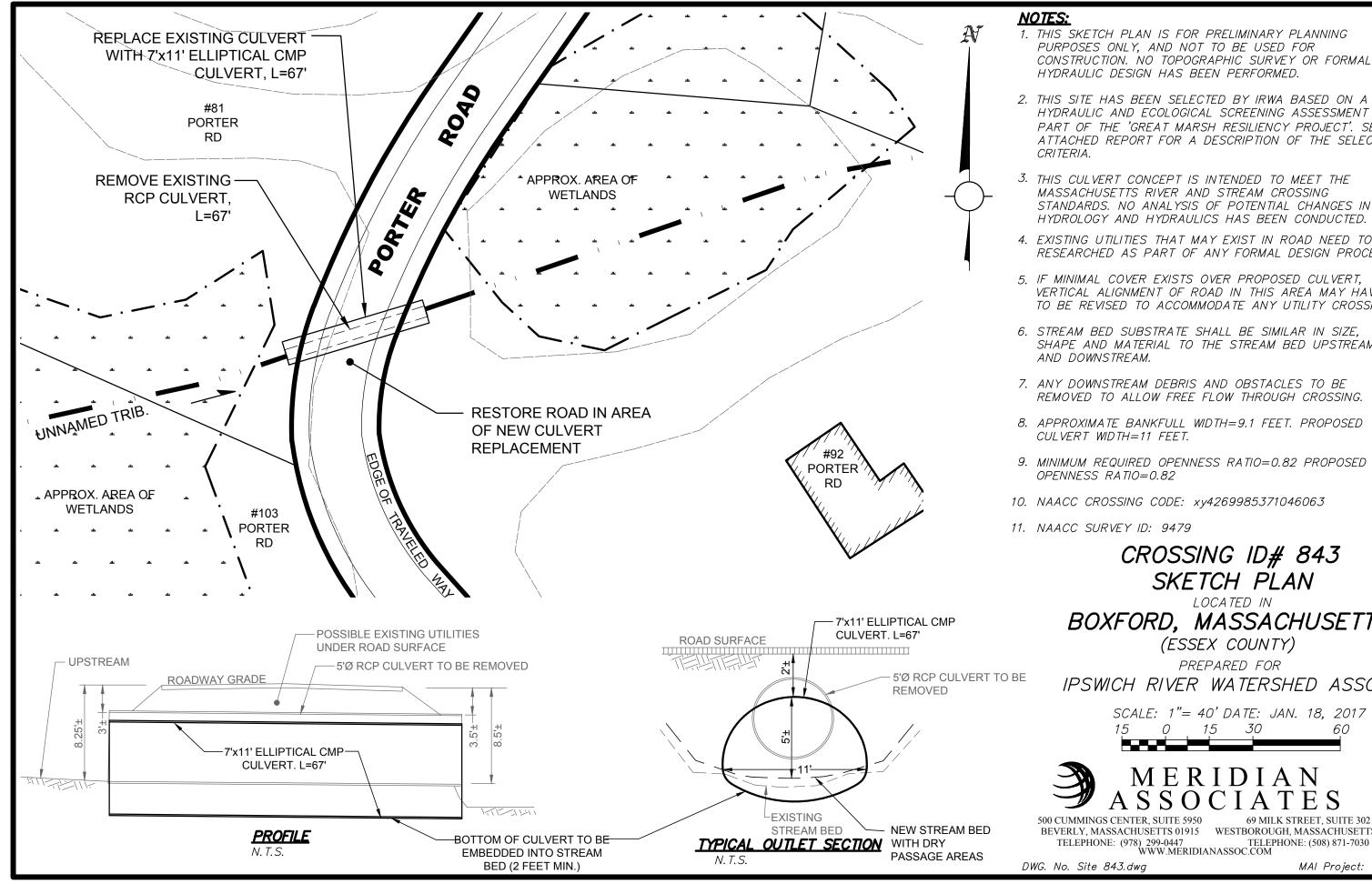
BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN HYDROLOGY AND HYDRAULICS HAS BEEN CONDUCTED.

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.


VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: JAN. 24, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

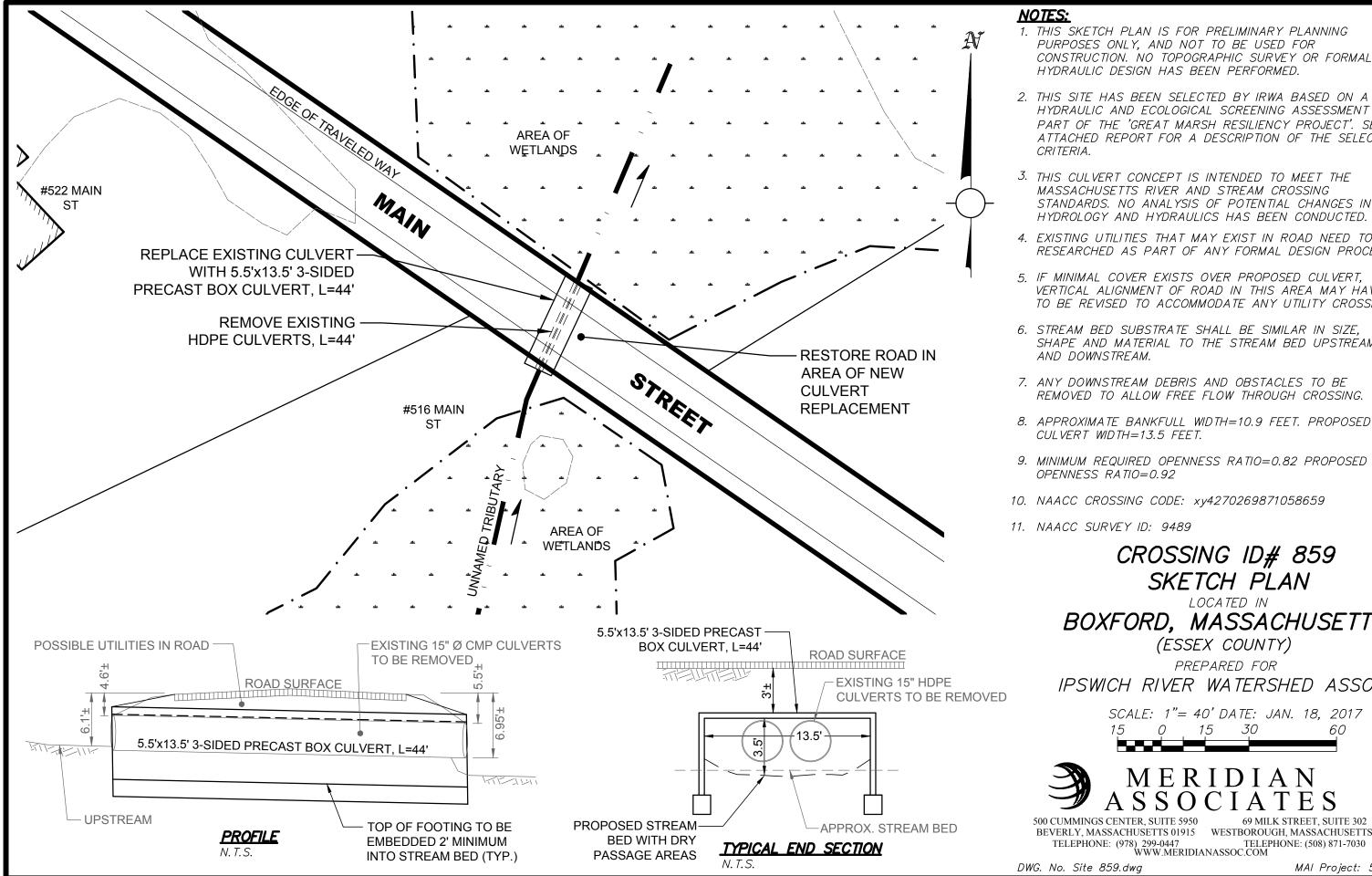


HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

BOXFORD, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: JAN. 18, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



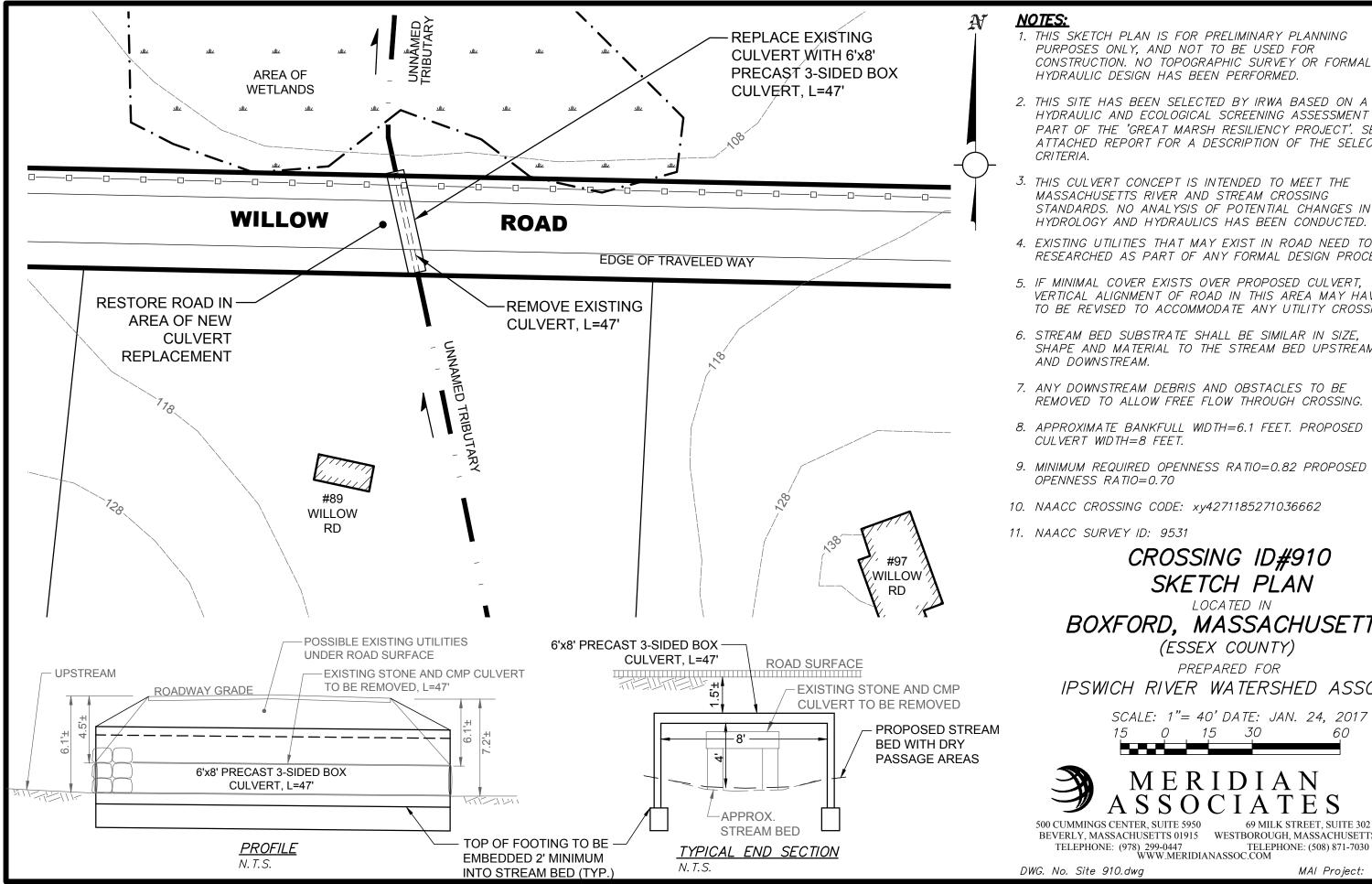
HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN HYDROLOGY AND HYDRAULICS HAS BEEN CONDUCTED.

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM


REMOVED TO ALLOW FREE FLOW THROUGH CROSSING.

# BOXFORD, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: JAN. 18, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN

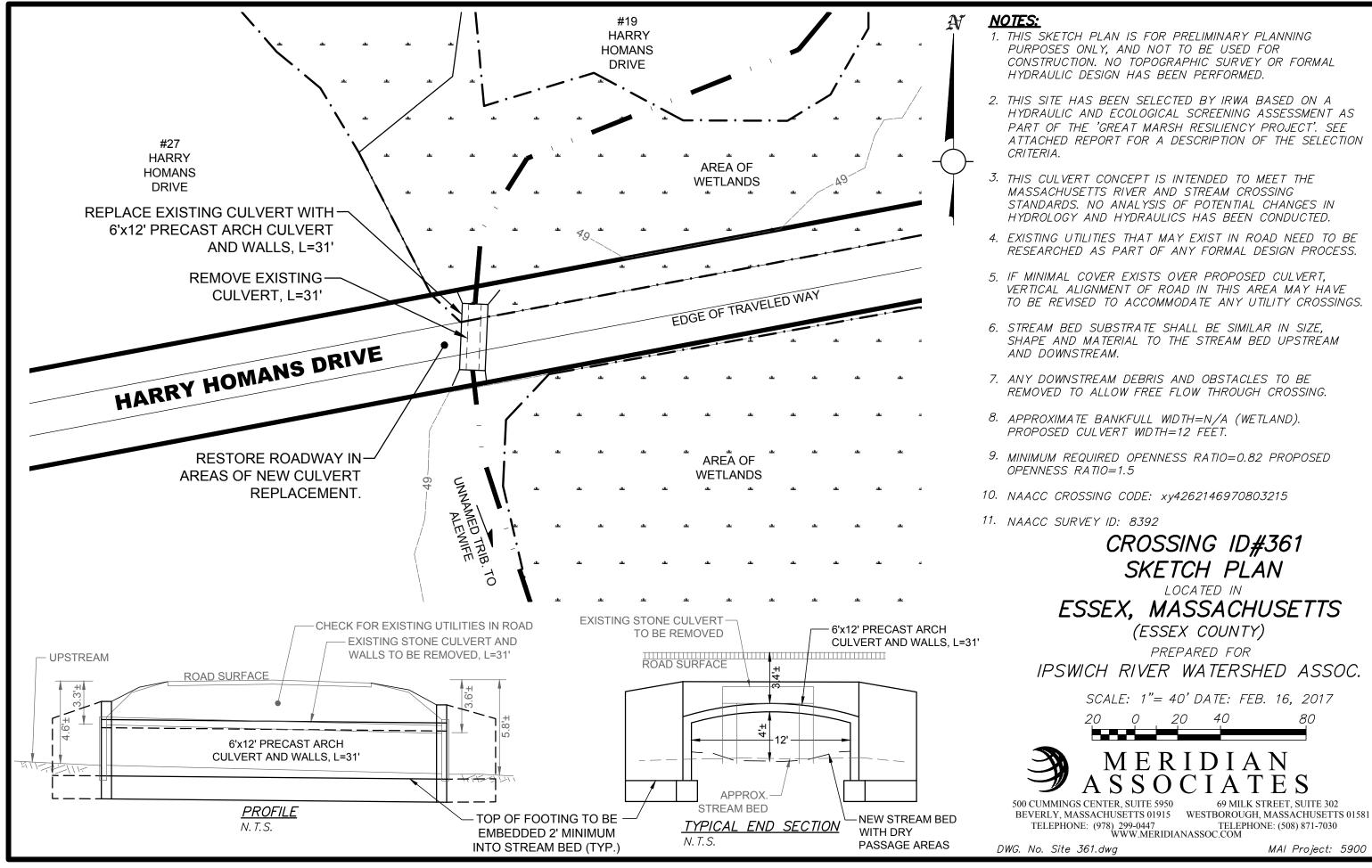
4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

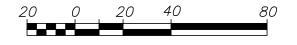
VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

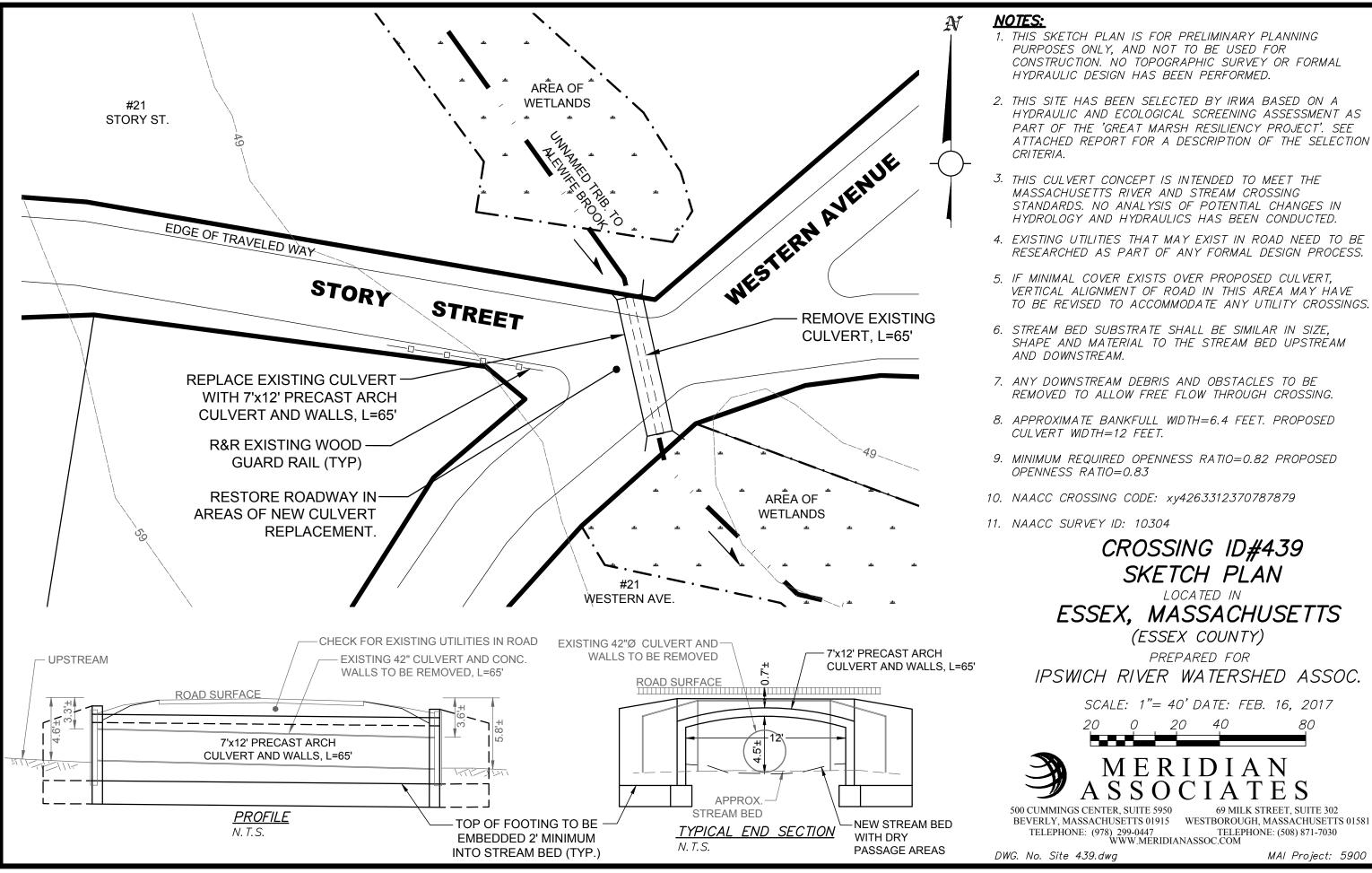
SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

BOXFORD, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.


SCALE: 1"= 40' DATE: JAN. 24, 2017 60


BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

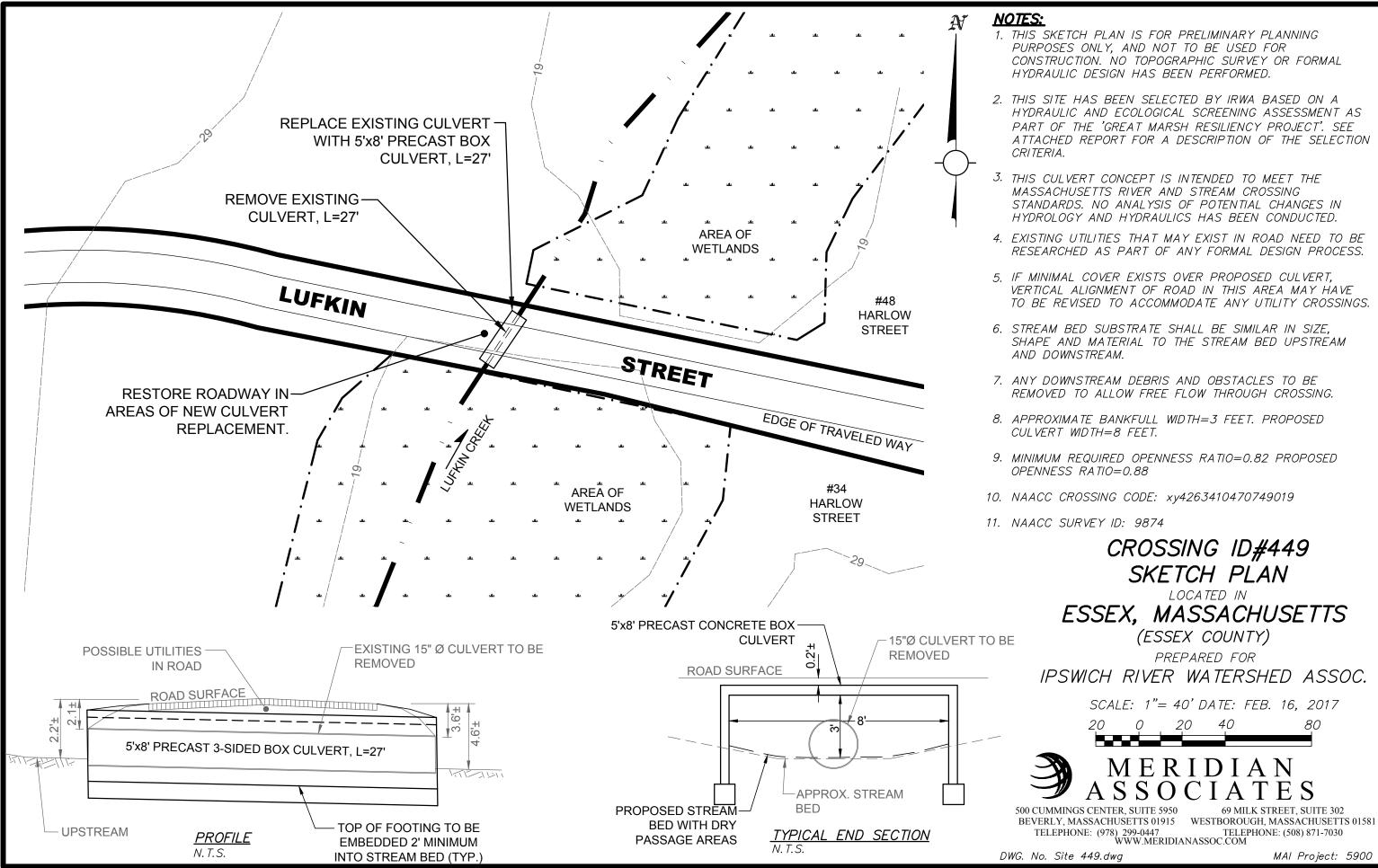

### Essex Designs

Conceptual designs for the replacement of select road-stream crossings in the Town of Essex, MA

3 pages



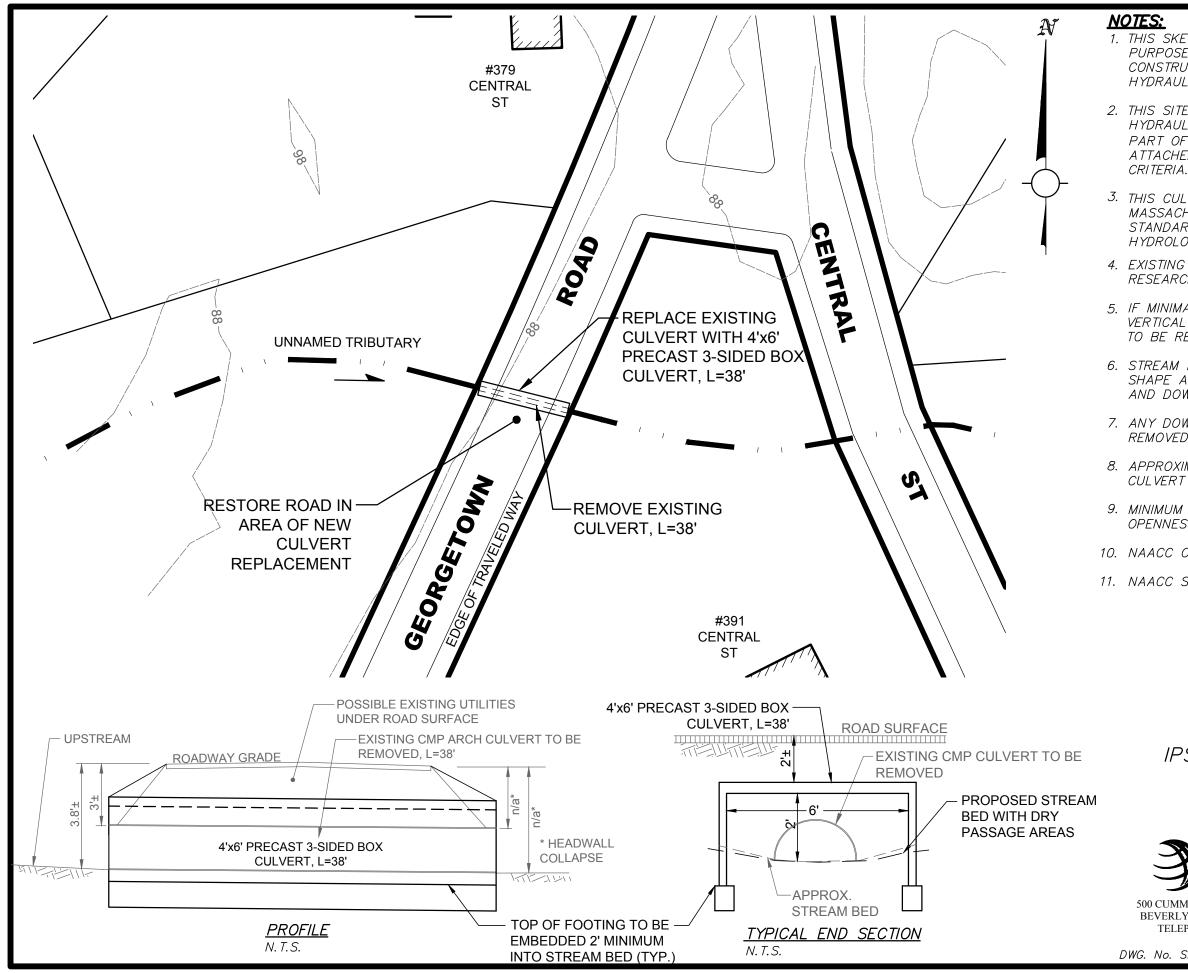





HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


IPSWICH RIVER WATERSHED ASSOC.



Georgetown Designs

Conceptual designs for the replacement of select road-stream crossings in the Town of Georgetown, MA

4 pages



1. THIS SKETCH PLAN IS FOR PRELIMINARY PLANNING PURPOSES ONLY, AND NOT TO BE USED FOR CONSTRUCTION. NO TOPOGRAPHIC SURVEY OR FORMAL HYDRAULIC DESIGN HAS BEEN PERFORMED.

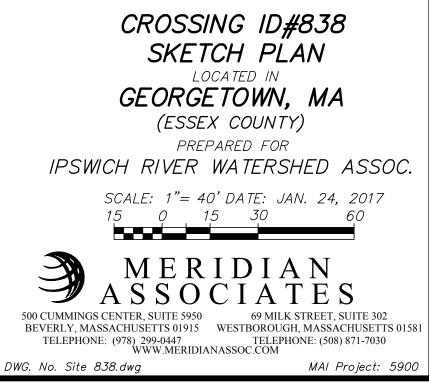
2. THIS SITE HAS BEEN SELECTED BY IRWA BASED ON A HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION CRITERIA.

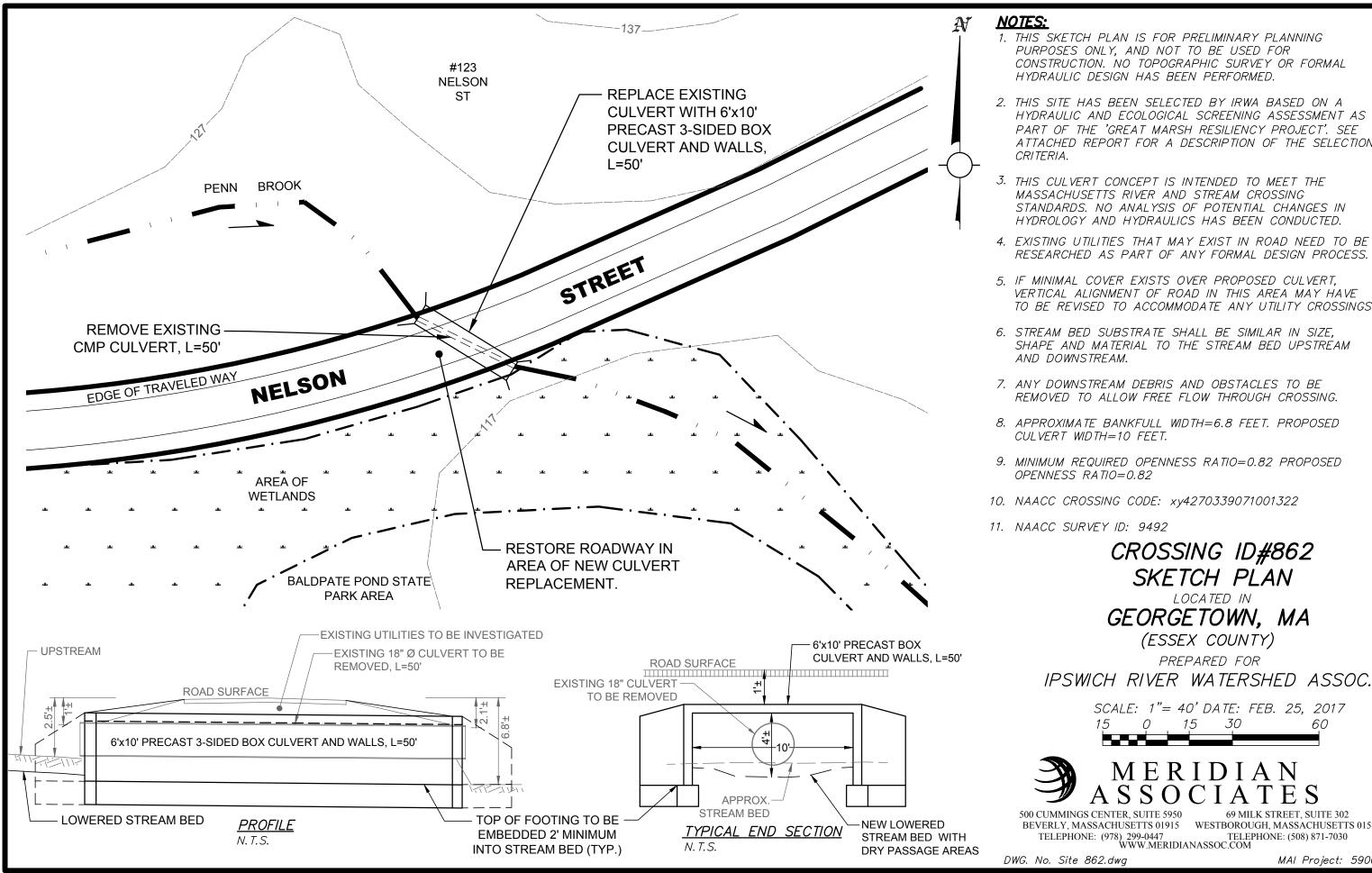
3. THIS CULVERT CONCEPT IS INTENDED TO MEET THE MASSACHUSETTS RIVER AND STREAM CROSSING STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN HYDROLOGY AND HYDRAULICS HAS BEEN CONDUCTED.

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

5. IF MINIMAL COVER EXISTS OVER PROPOSED CULVERT, VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

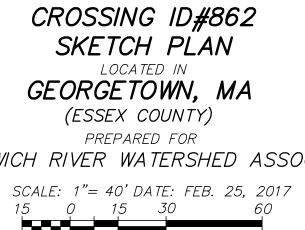
6. STREAM BED SUBSTRATE SHALL BE SIMILAR IN SIZE, SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM AND DOWNSTREAM.


7. ANY DOWNSTREAM DEBRIS AND OBSTACLES TO BE REMOVED TO ALLOW FREE FLOW THROUGH CROSSING.


8. APPROXIMATE BANKFULL WIDTH=4.9 FEET. PROPOSED CULVERT WIDTH=6 FEET.

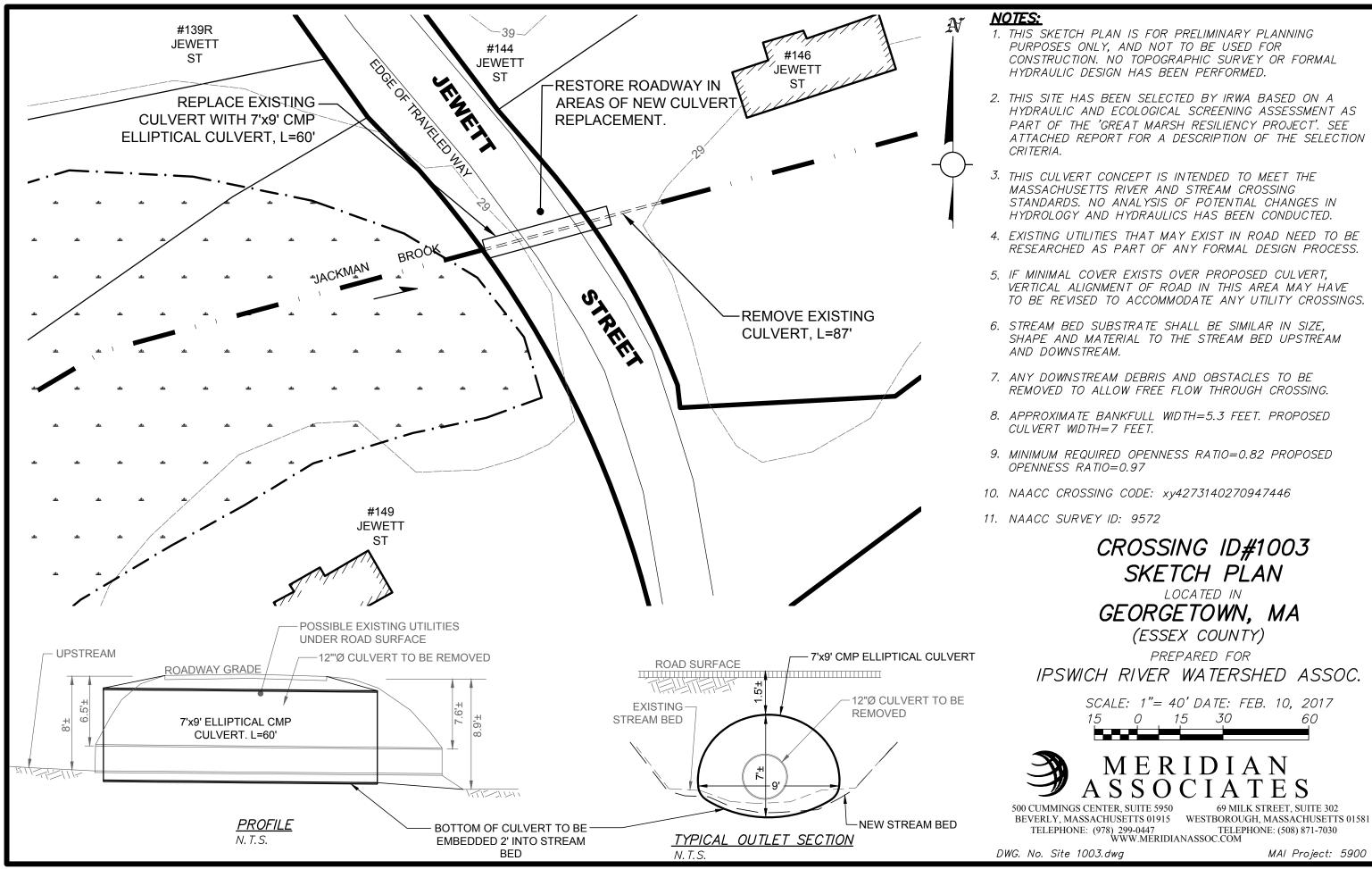
9. MINIMUM REQUIRED OPENNESS RATIO=0.82 PROPOSED OPENNESS RATIO=0.32

10. NAACC CROSSING CODE: xy4269889570987030


11. NAACC SURVEY ID: 6927



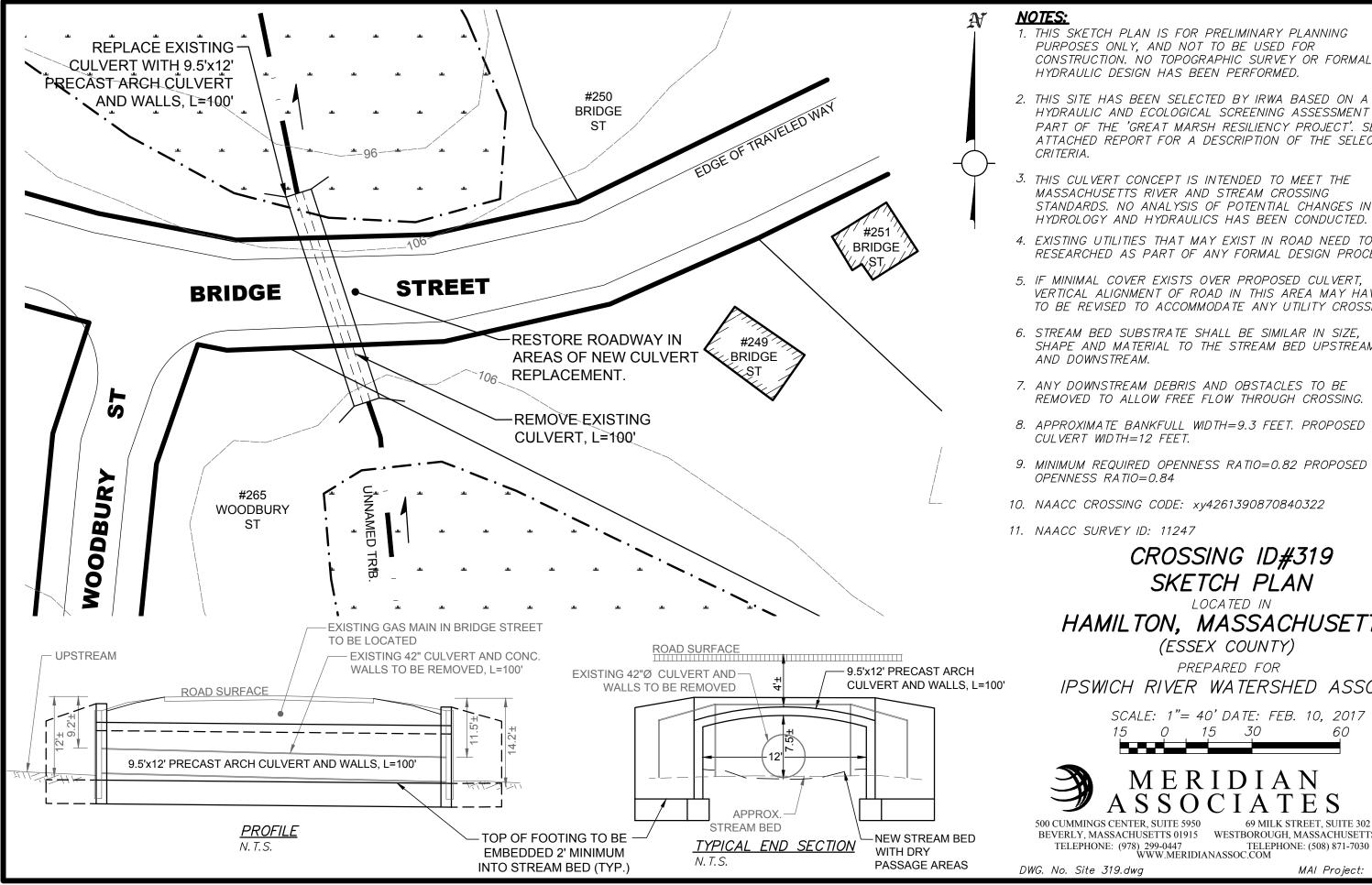



RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.



BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM






Hamilton Designs

Conceptual designs for the replacement of select road-stream crossings in the Town of Hamilton, MA

3 pages

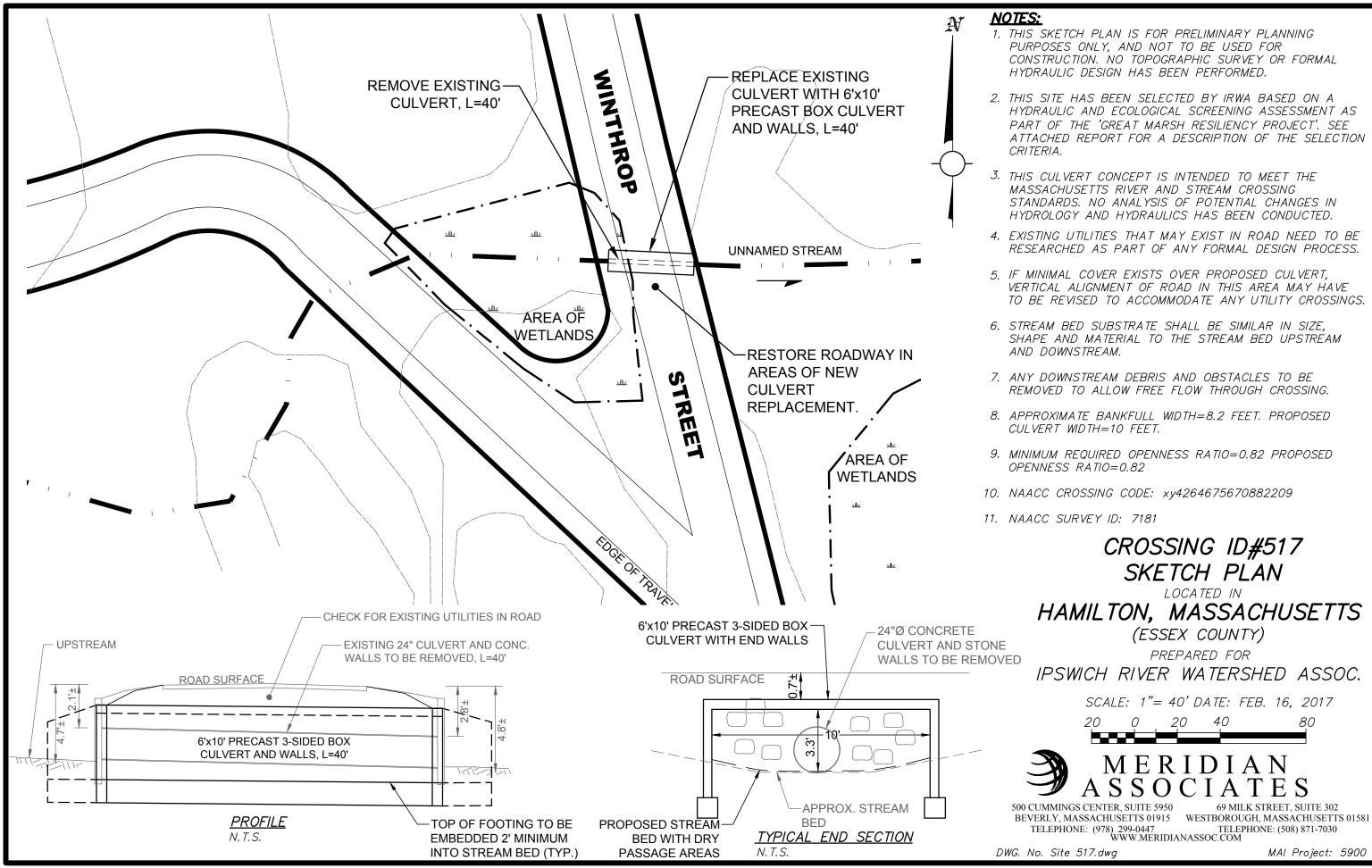


HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

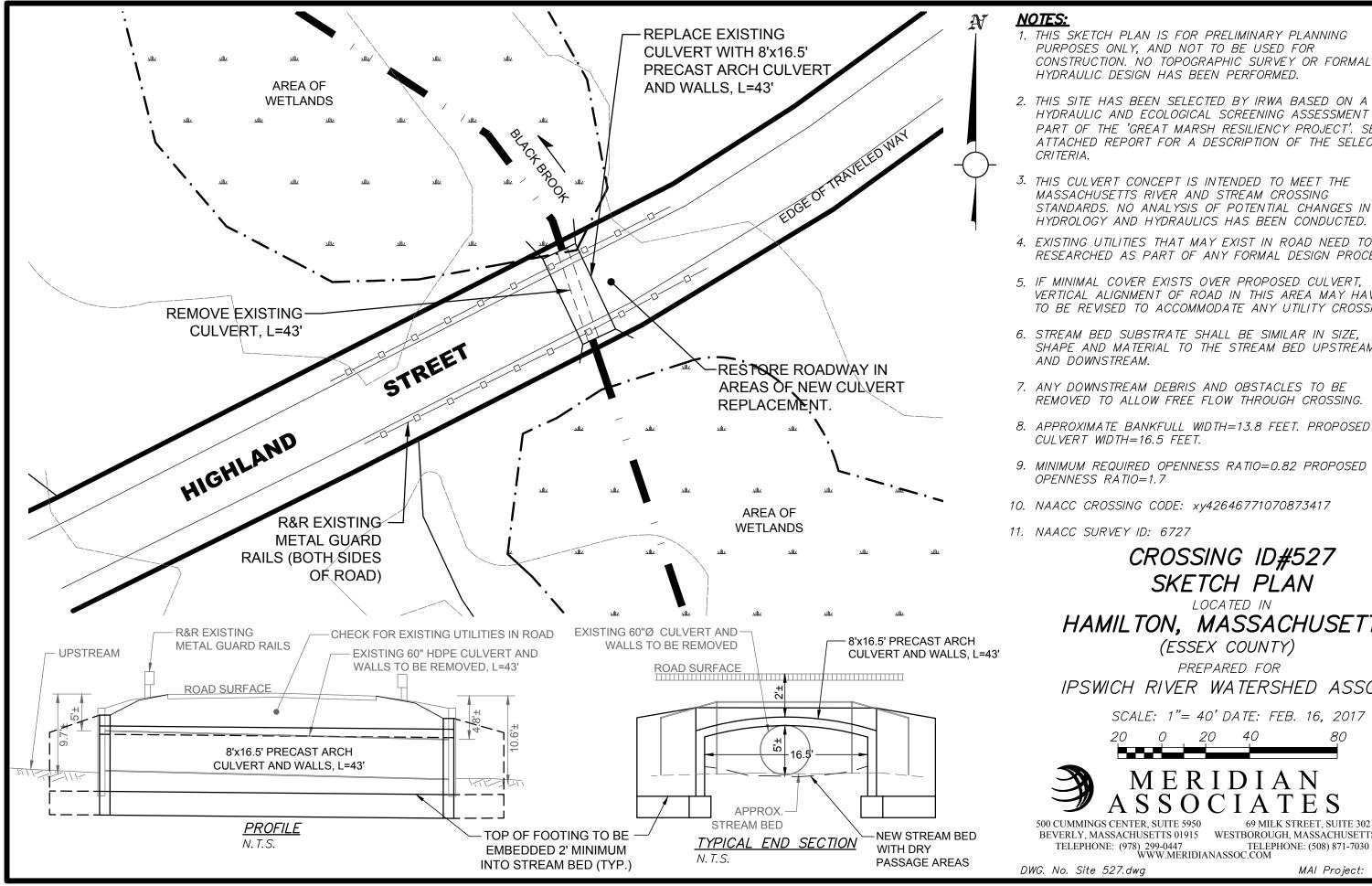

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

HAMILTON, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 10, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM




RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

HAMILTON, MASSACHUSETTS

TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

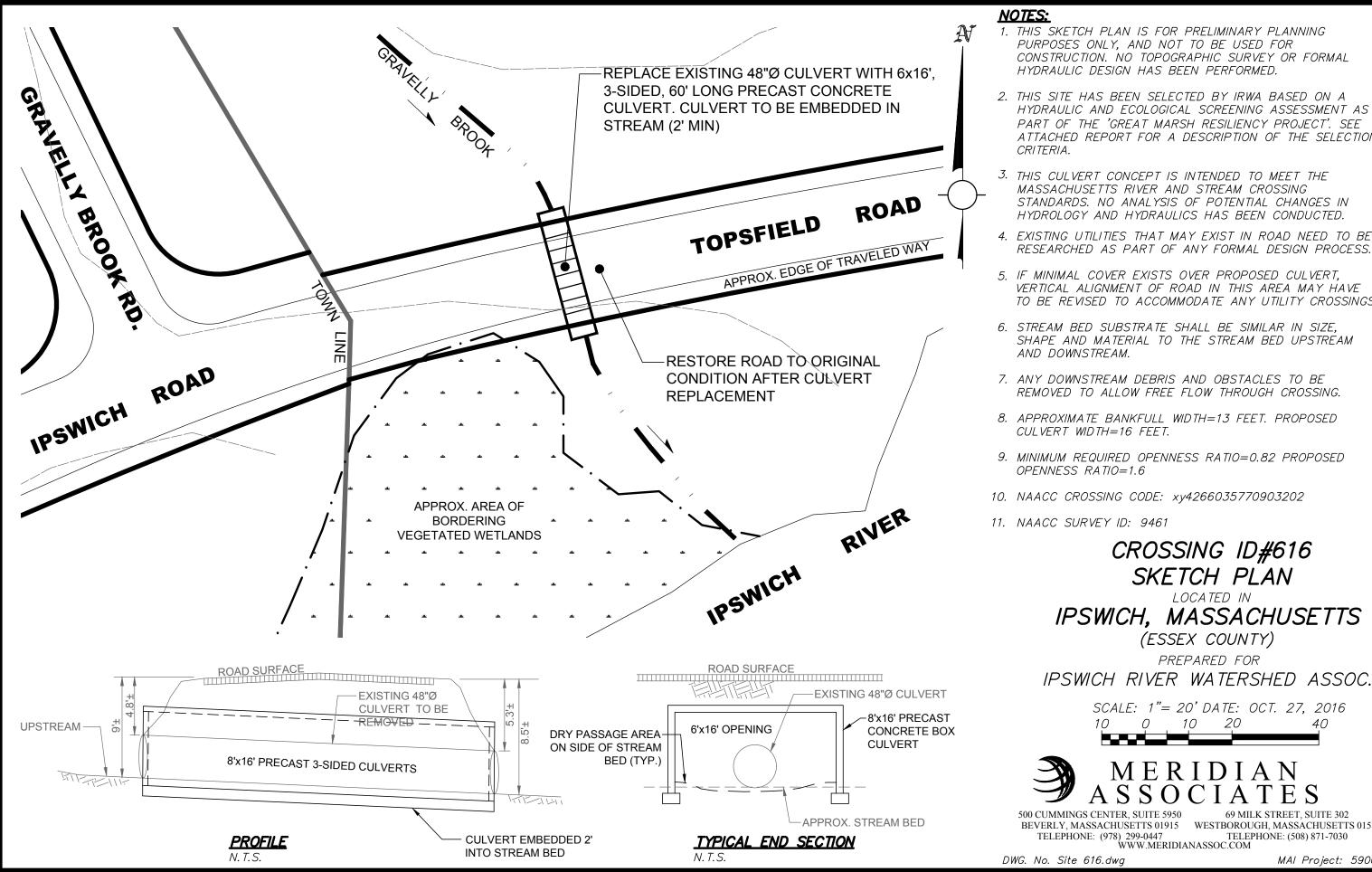
VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

HAMILTON, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 16, 2017


80

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

Ipswich Designs

Conceptual designs for the replacement of select road-stream crossings in the Town of Ipswich, MA

4 pages



1. THIS SKETCH PLAN IS FOR PRELIMINARY PLANNING PURPOSES ONLY. AND NOT TO BE USED FOR CONSTRUCTION. NO TOPOGRAPHIC SURVEY OR FORMAL HYDRAULIC DESIGN HAS BEEN PERFORMED.

2. THIS SITE HAS BEEN SELECTED BY IRWA BASED ON A HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

3. THIS CULVERT CONCEPT IS INTENDED TO MEET THE MASSACHUSETTS RIVER AND STREAM CROSSING STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN HYDROLOGY AND HYDRAULICS HAS BEEN CONDUCTED.

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

5. IF MINIMAL COVER EXISTS OVER PROPOSED CULVERT, VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

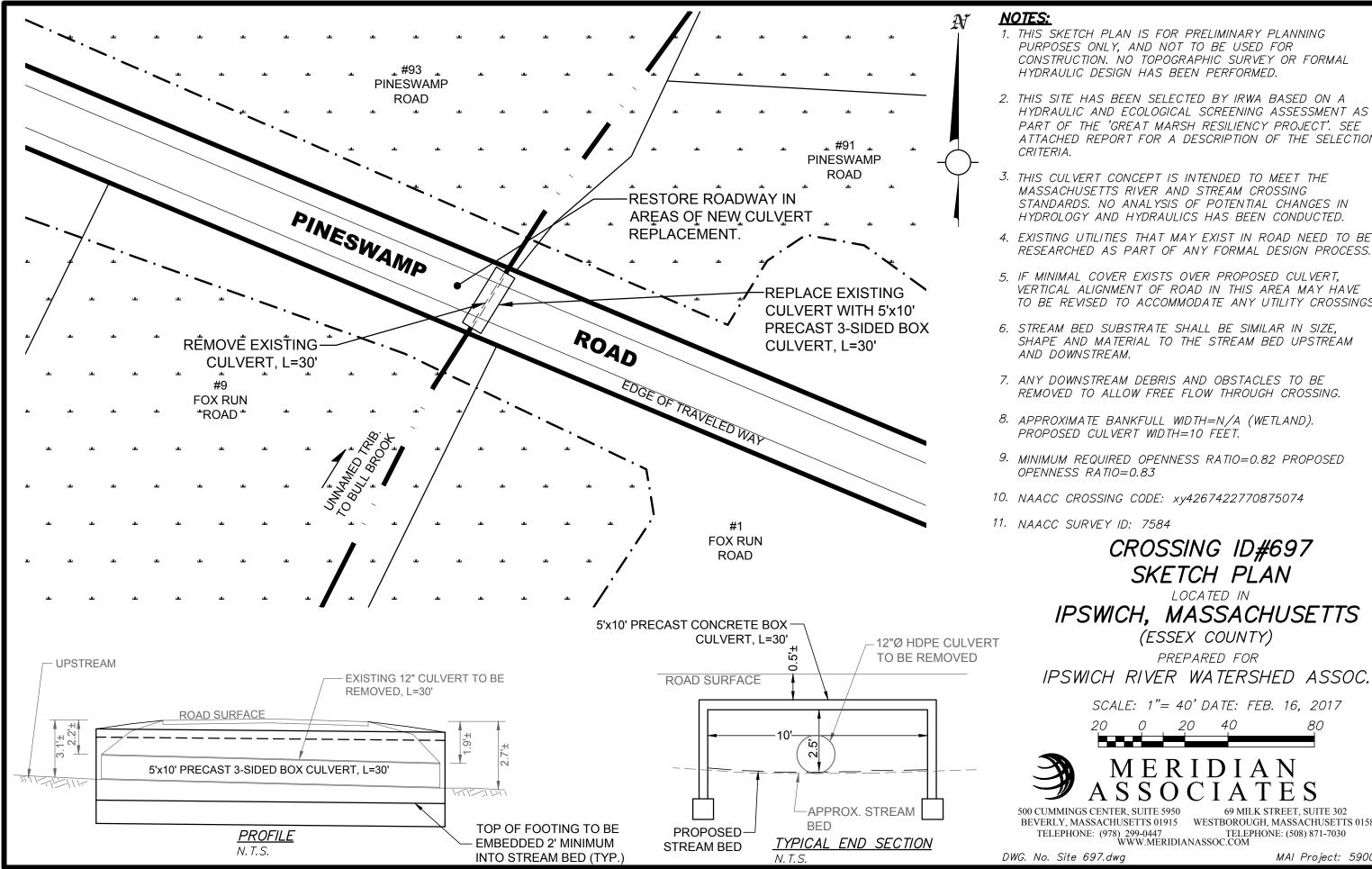
6. STREAM BED SUBSTRATE SHALL BE SIMILAR IN SIZE, SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

7. ANY DOWNSTREAM DEBRIS AND OBSTACLES TO BE REMOVED TO ALLOW FREE FLOW THROUGH CROSSING.

8. APPROXIMATE BANKFULL WIDTH=13 FEET. PROPOSED

9. MINIMUM REQUIRED OPENNESS RATIO=0.82 PROPOSED

10. NAACC CROSSING CODE: xy4266035770903202


### CROSSING ID#616 SKETCH PLAN

LOCATED IN IPSWICH, MASSACHUSETTS (ESSEX COUNTY)

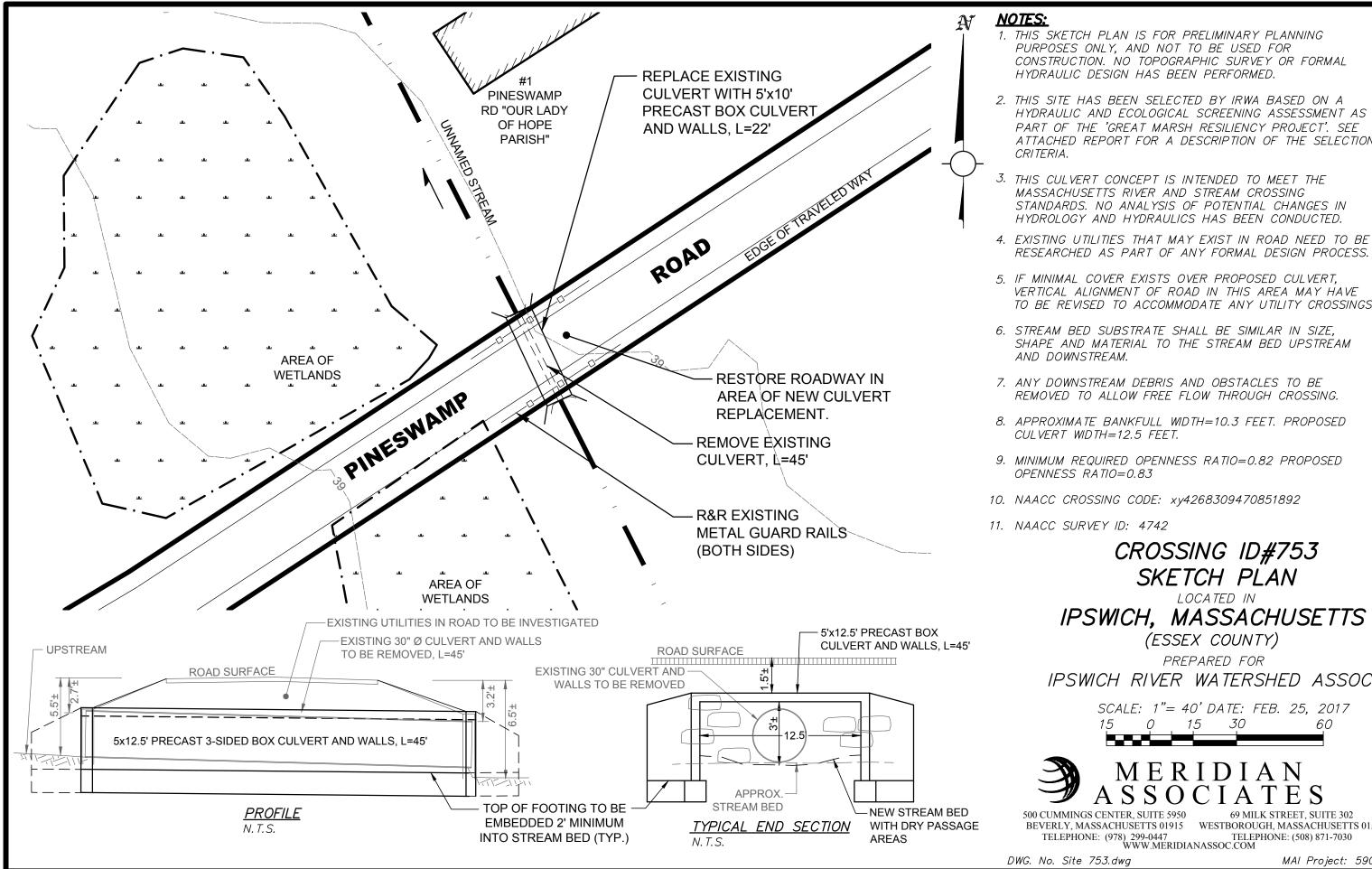
PREPARED FOR

SCALE: 1"= 20' DATE: OCT. 27, 2016 10 20

69 MILK STREET, SUITE 302 BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.


VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

IPSWICH, MASSACHUSETTS

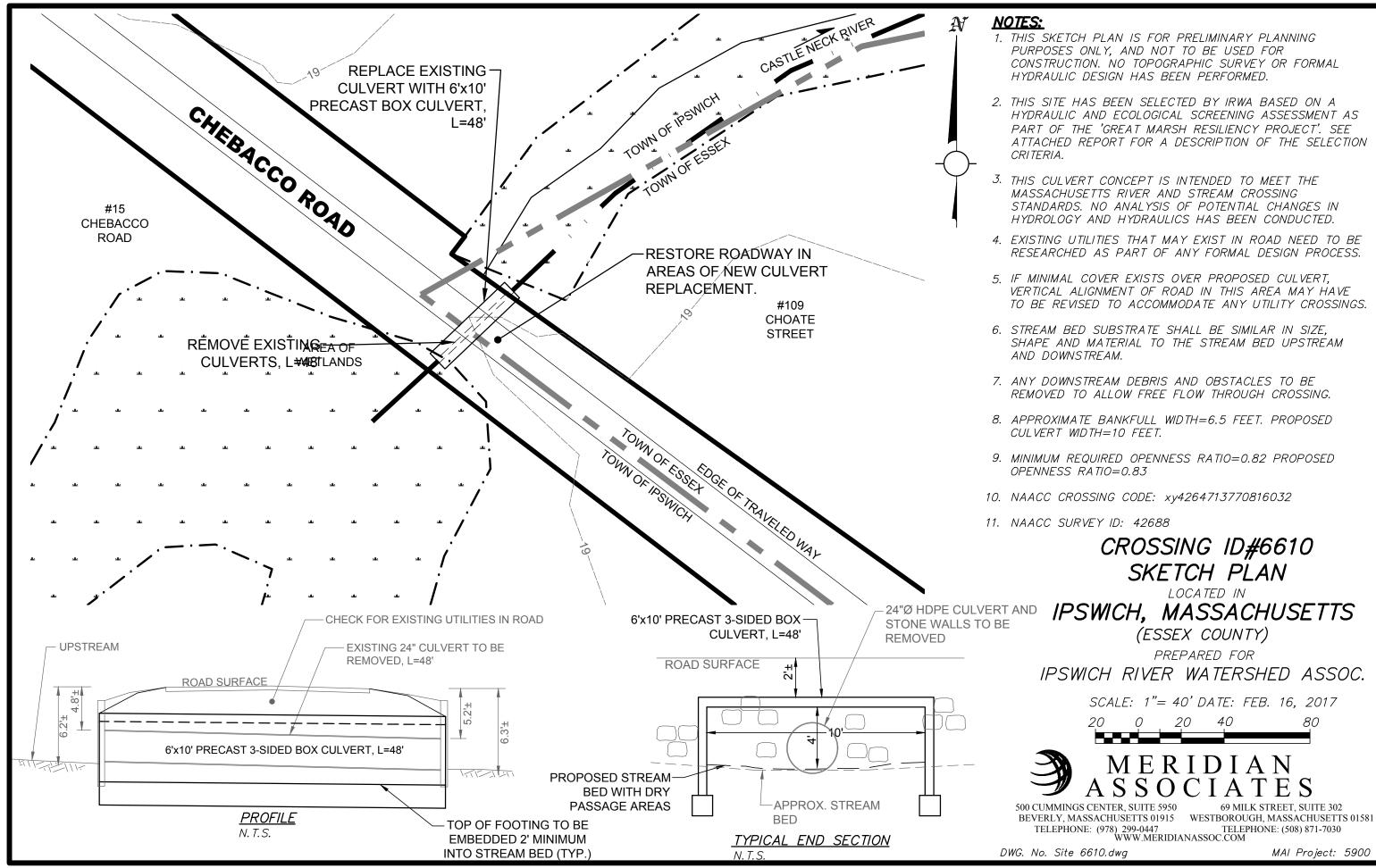
IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 16, 2017

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.


VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

IPSWICH, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 25, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



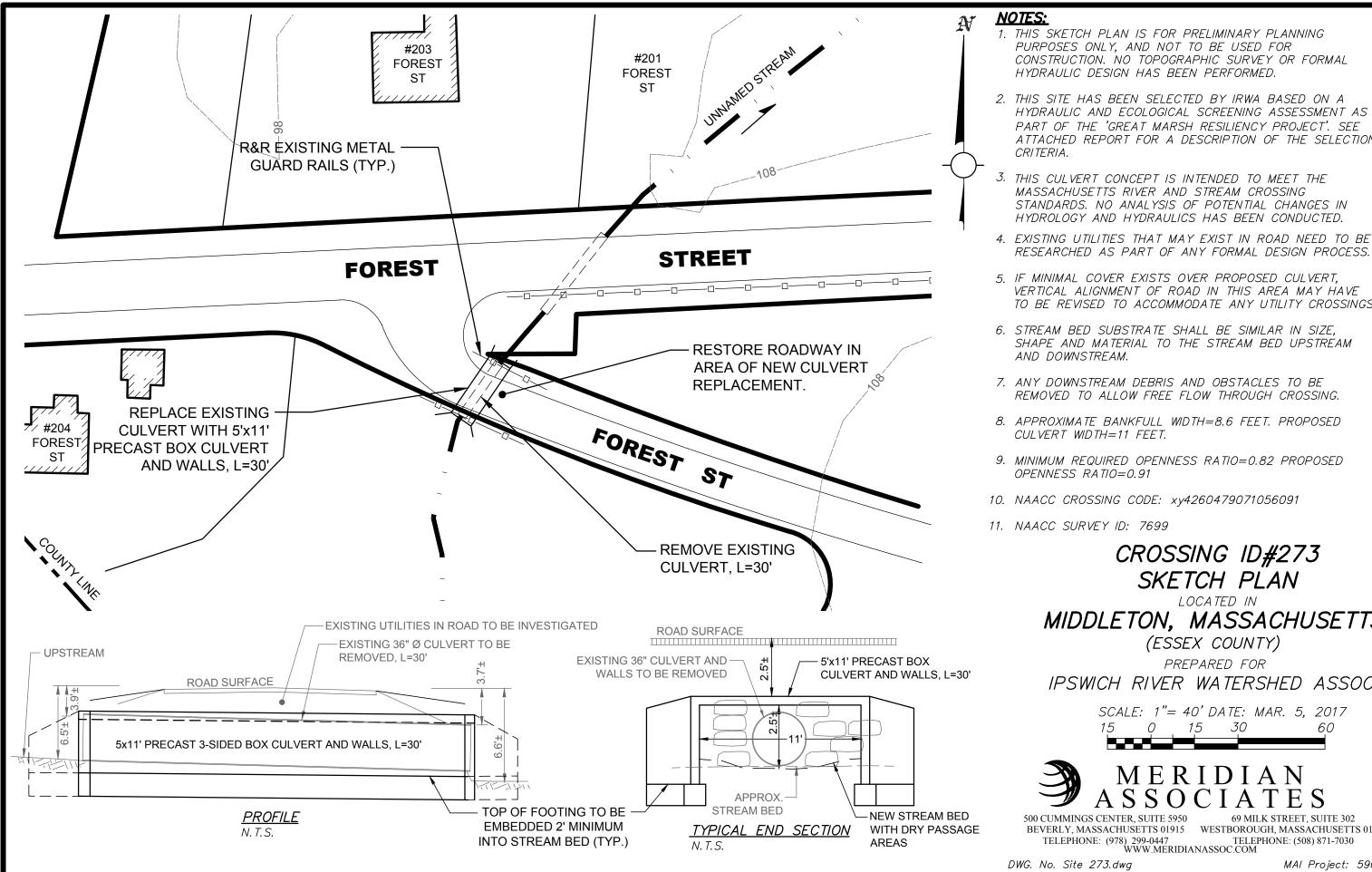
HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

IPSWICH, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.


SCALE: 1"= 40' DATE: FEB. 16, 2017

TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

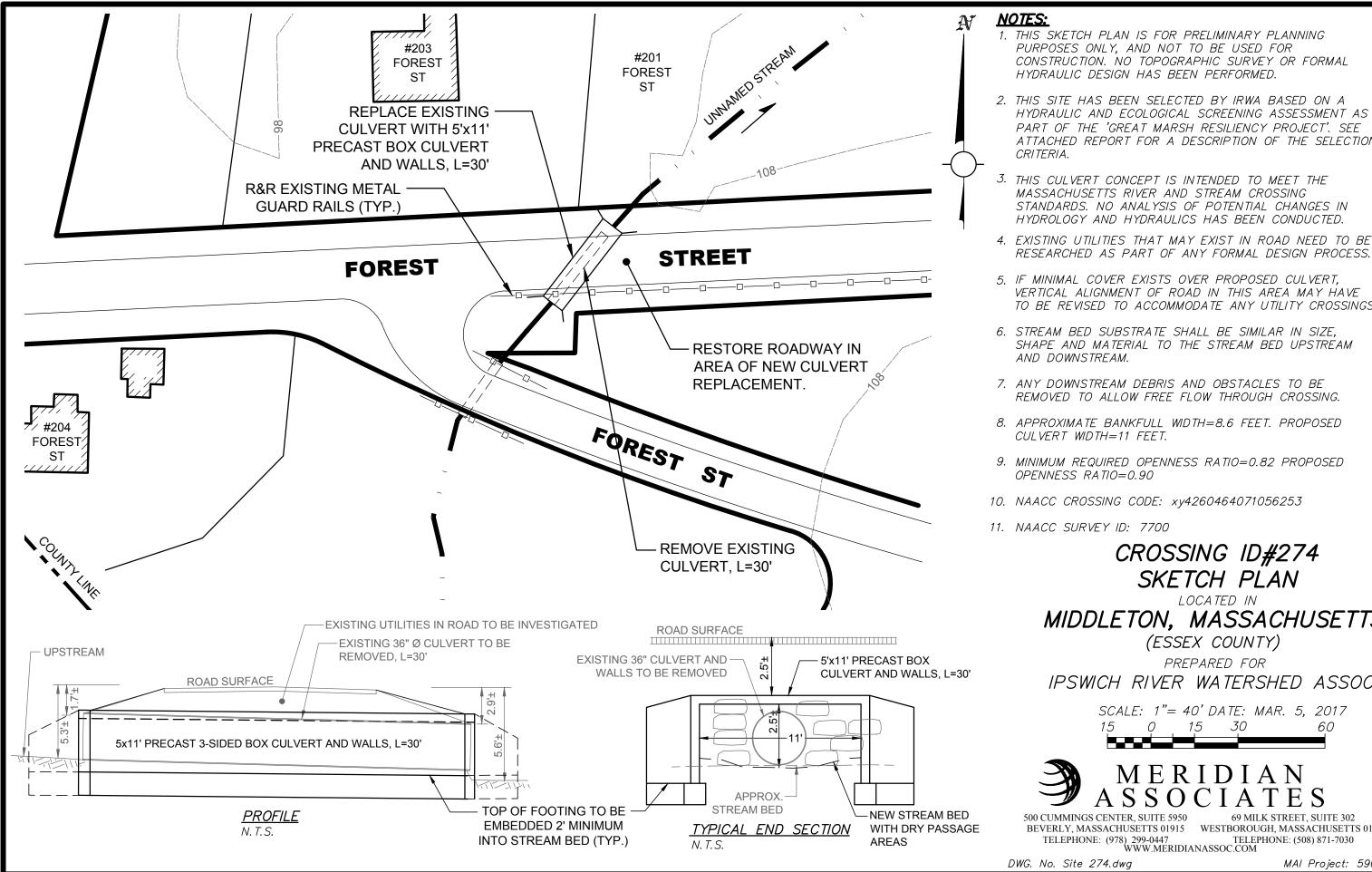
### Middleton Designs

Conceptual designs for the replacement of select road-stream crossings in the Town of Middleton, MA

3 pages



RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.


TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

MIDDLETON, MASSACHUSETTS

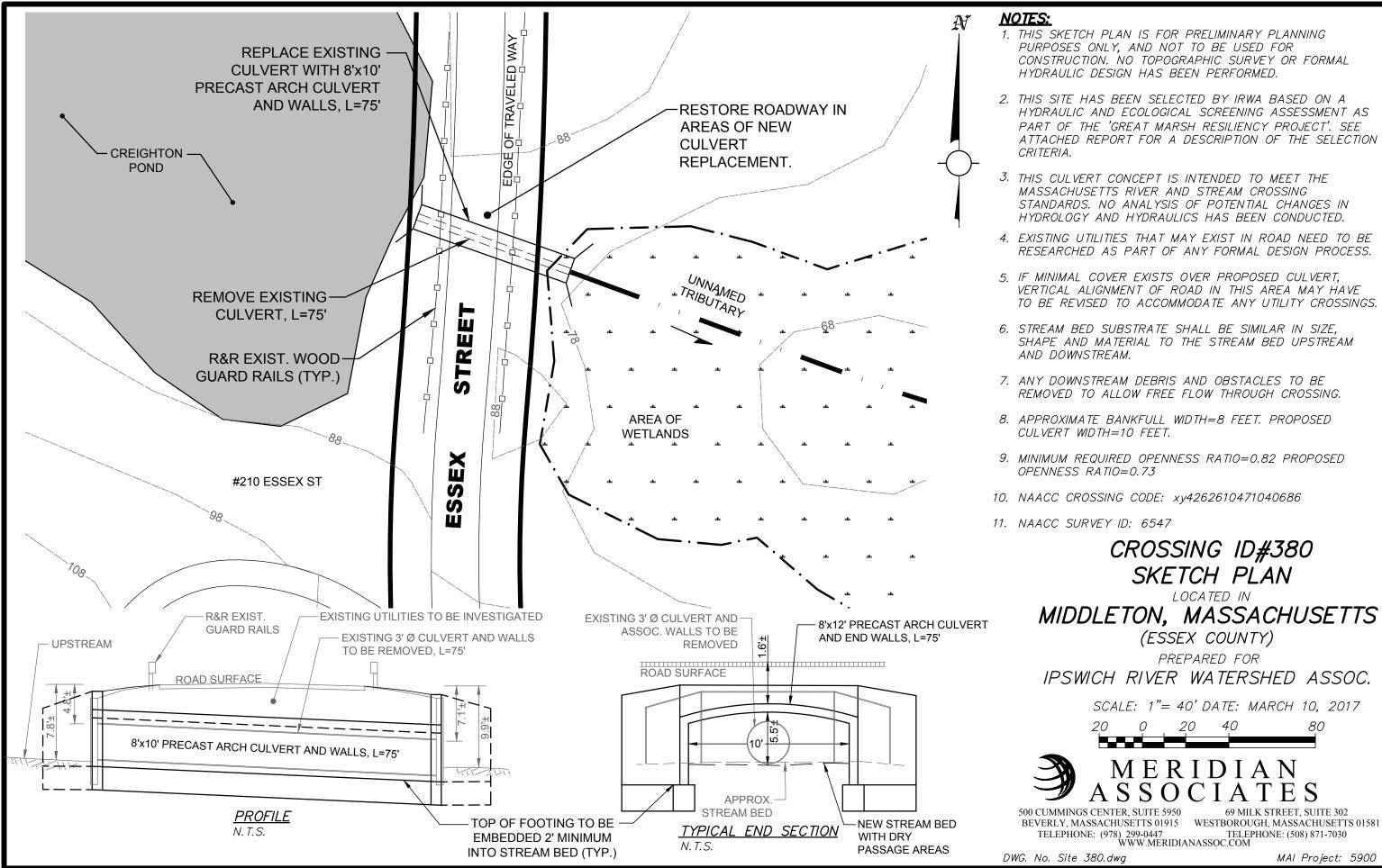
IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: MAR. 5, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

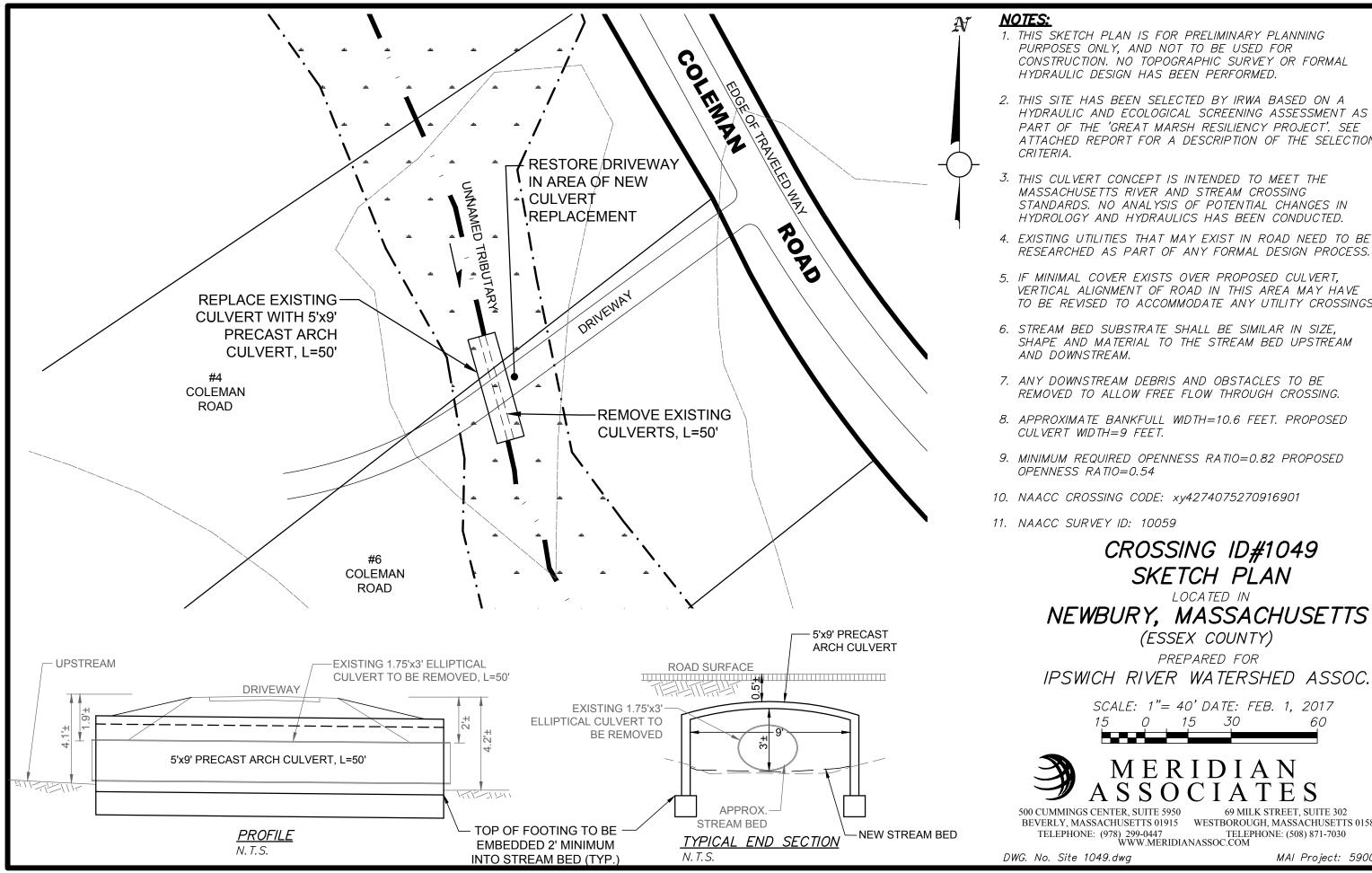

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

MIDDLETON, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: MAR. 5, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM




MIDDLETON, MASSACHUSETTS

Newbury Designs

Conceptual designs for the replacement of select road-stream crossings in the Town of Newbury, MA

12 pages

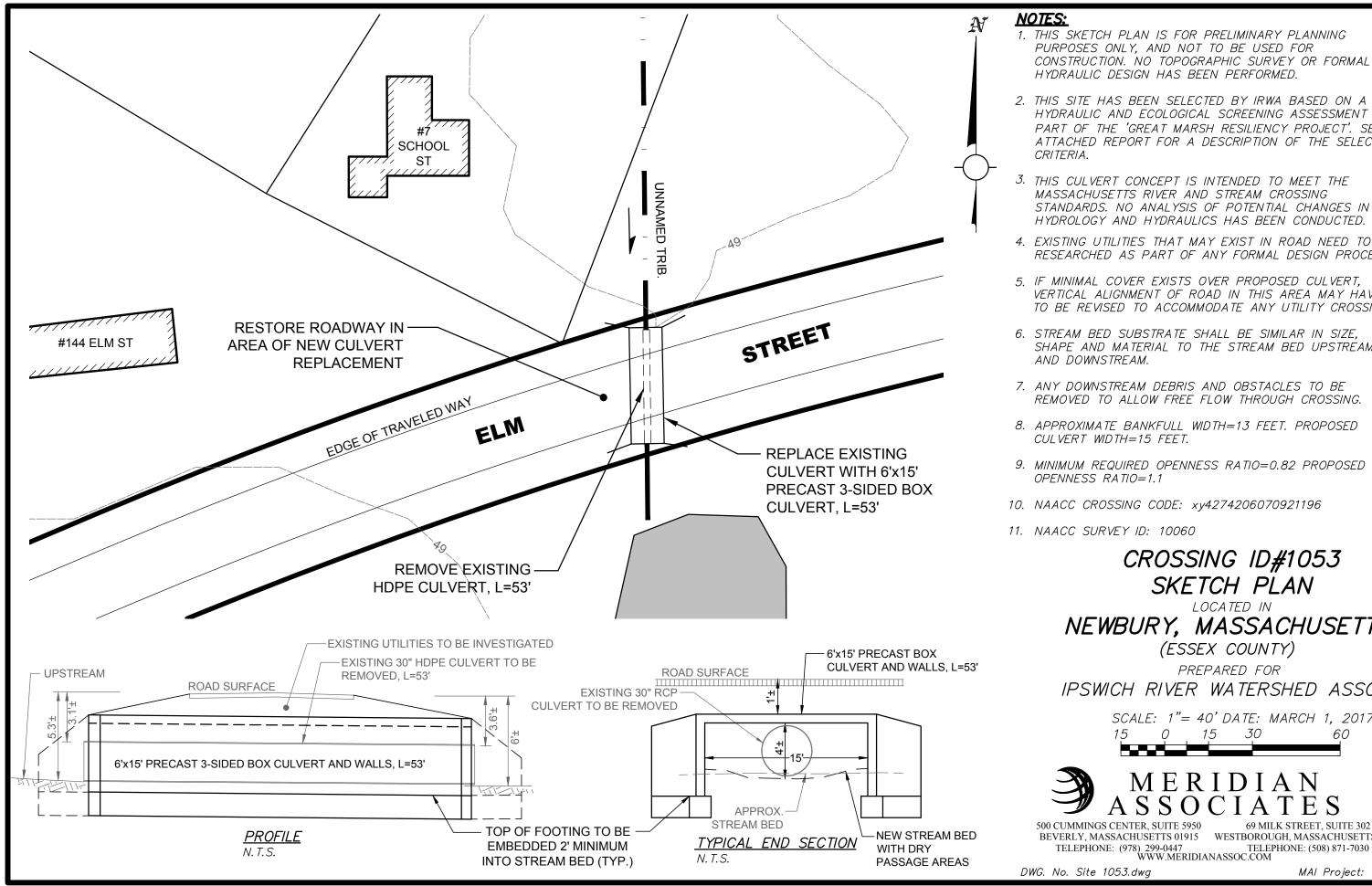


HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN

RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

NEWBURY, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

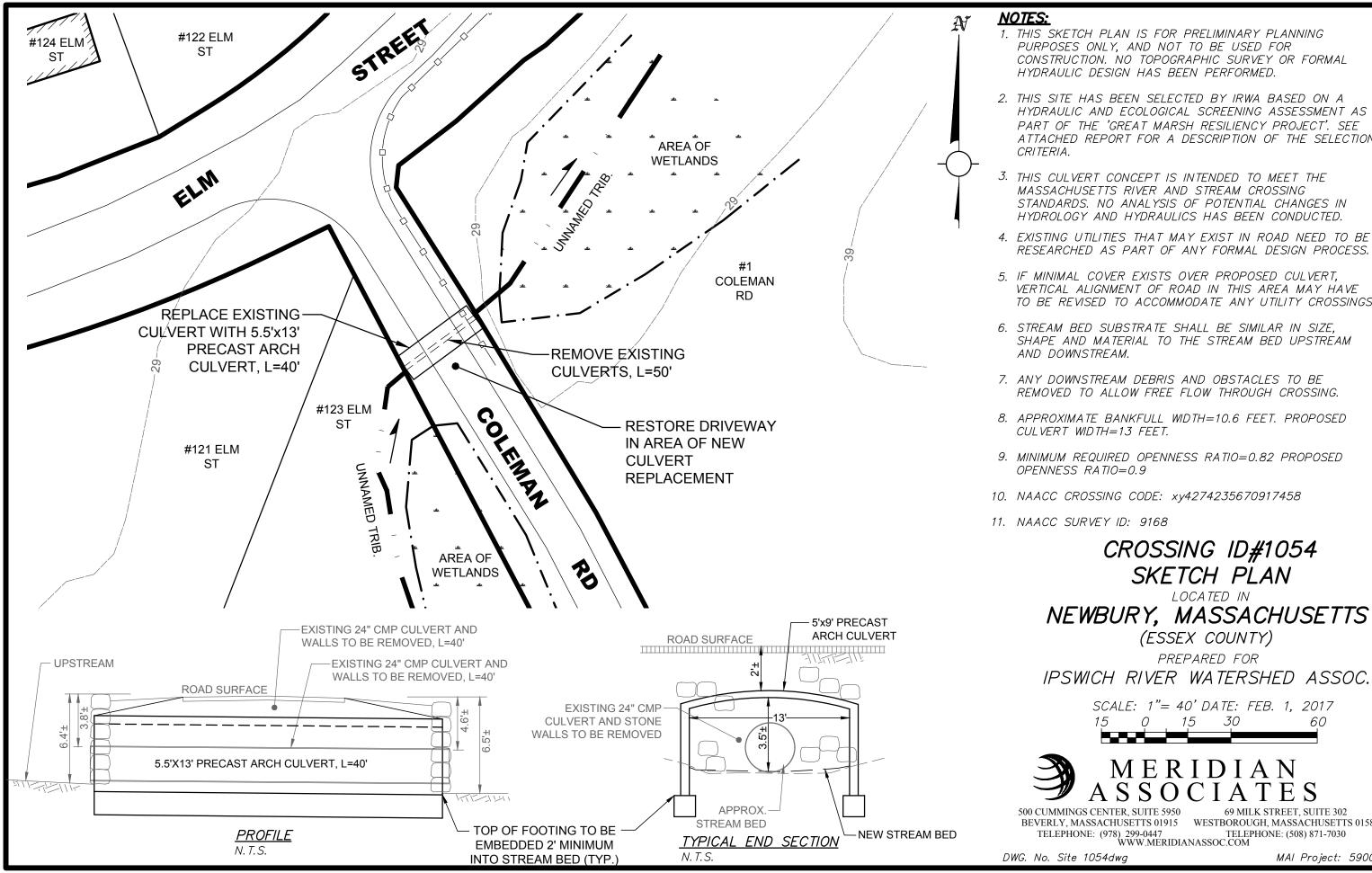
SCALE: 1"= 40' DATE: FEB. 1, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

NEWBURY, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: MARCH 1, 2017 60

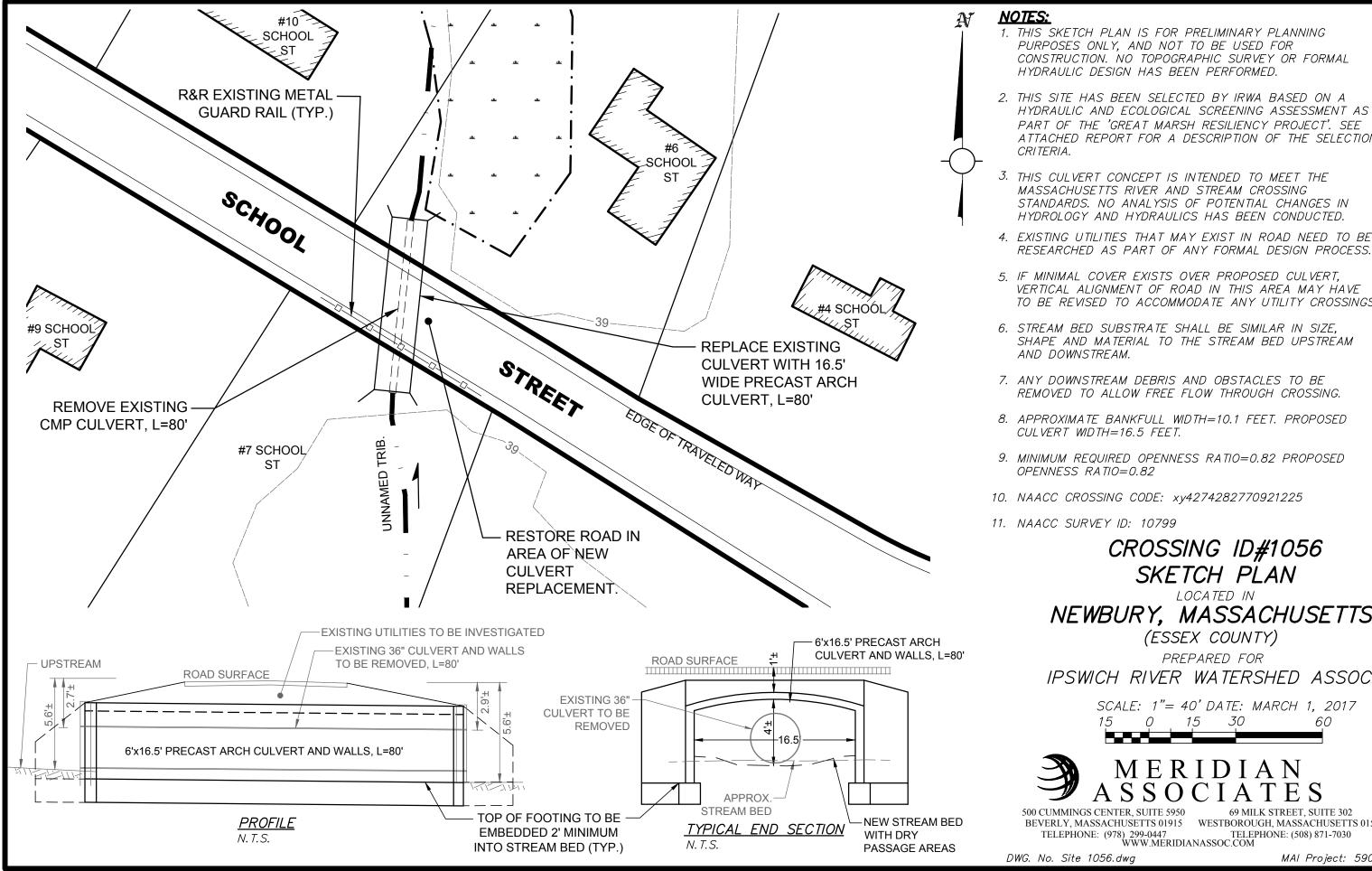
BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 WWW.MERIDIANASSOC.COM



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

NEWBURY, MASSACHUSETTS

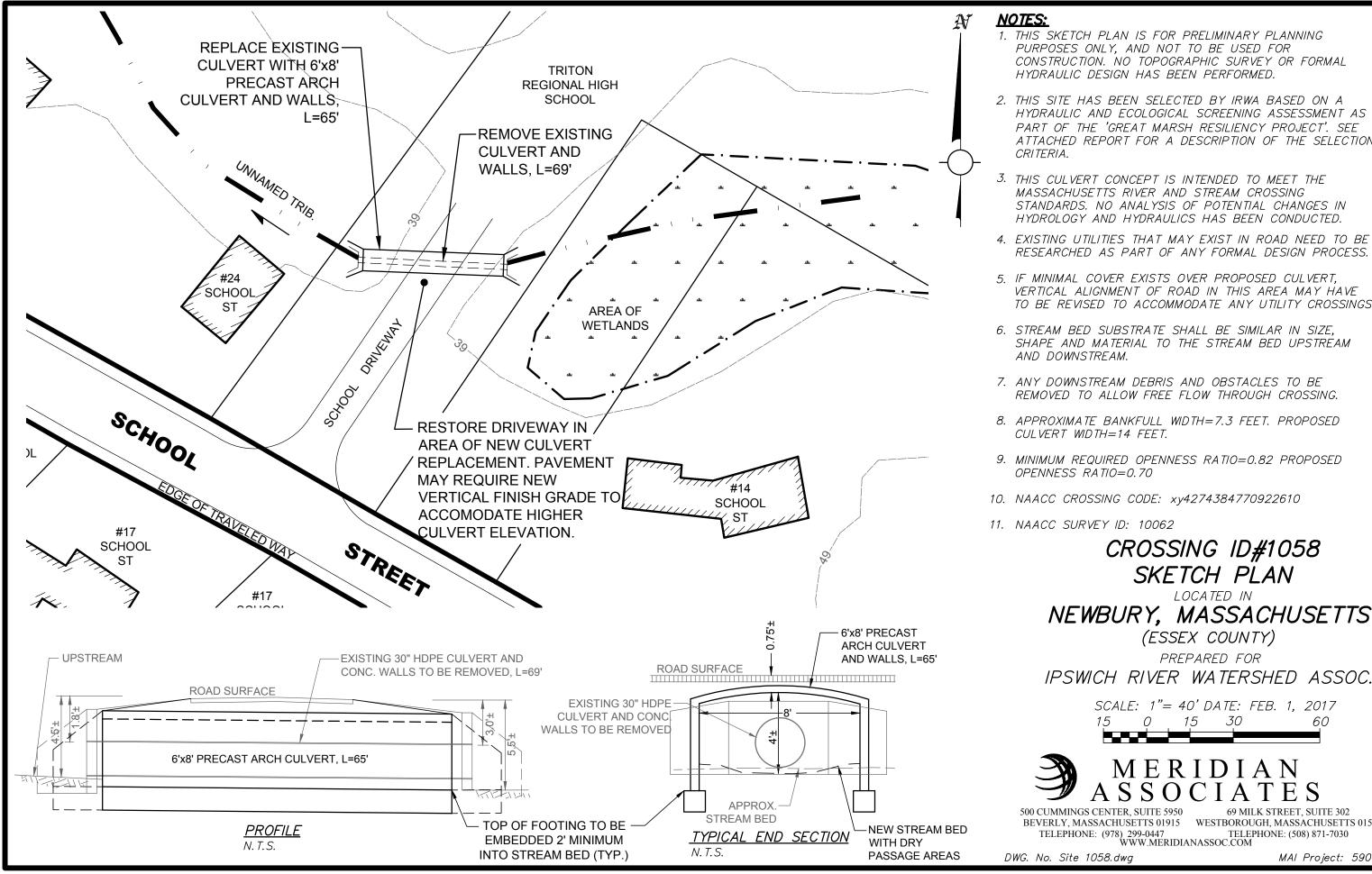
IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 1, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.


VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

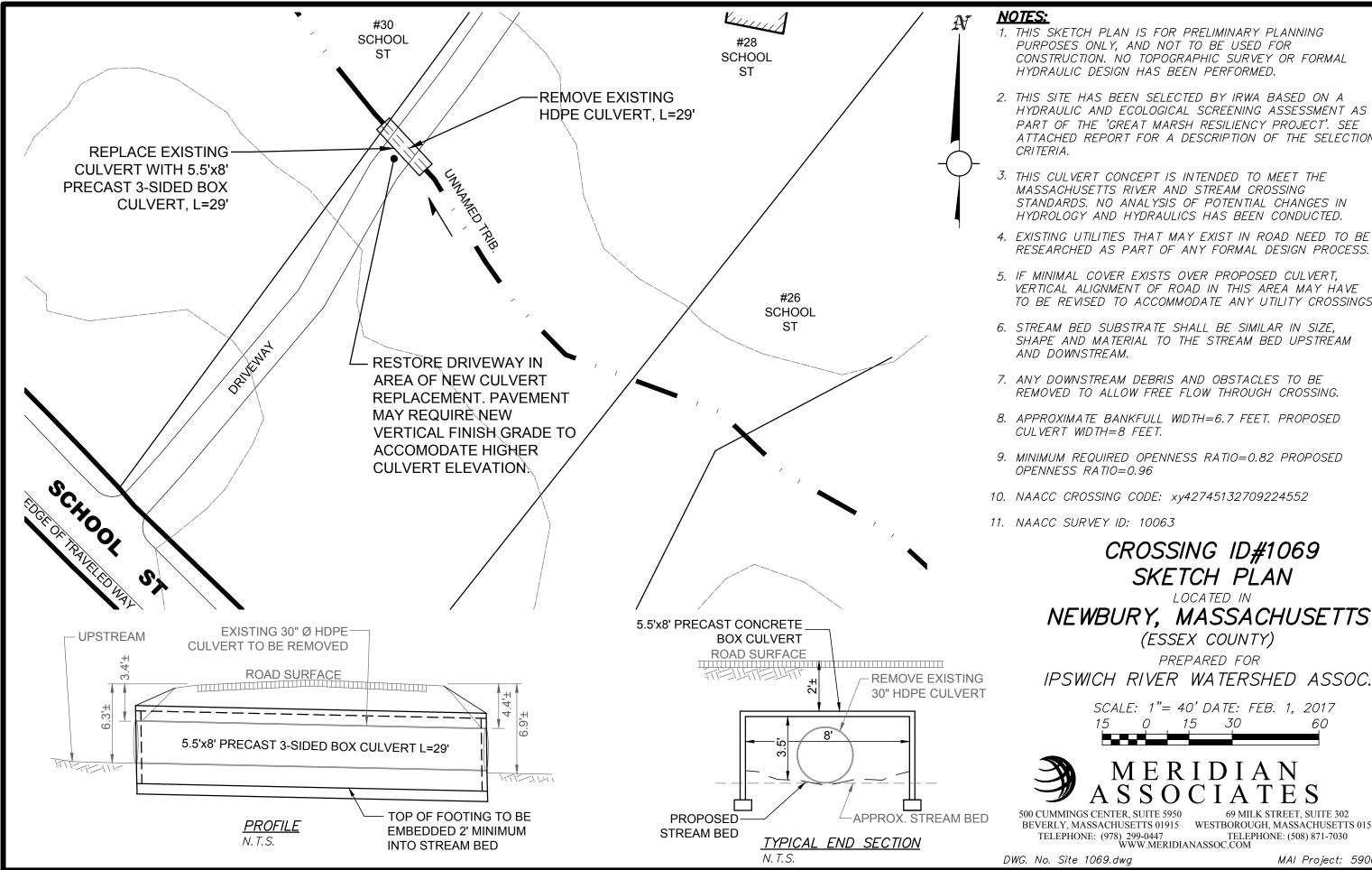
NEWBURY, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: MARCH 1, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 WWW.MERIDIANASSOC.COM




RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

NEWBURY, MASSACHUSETTS

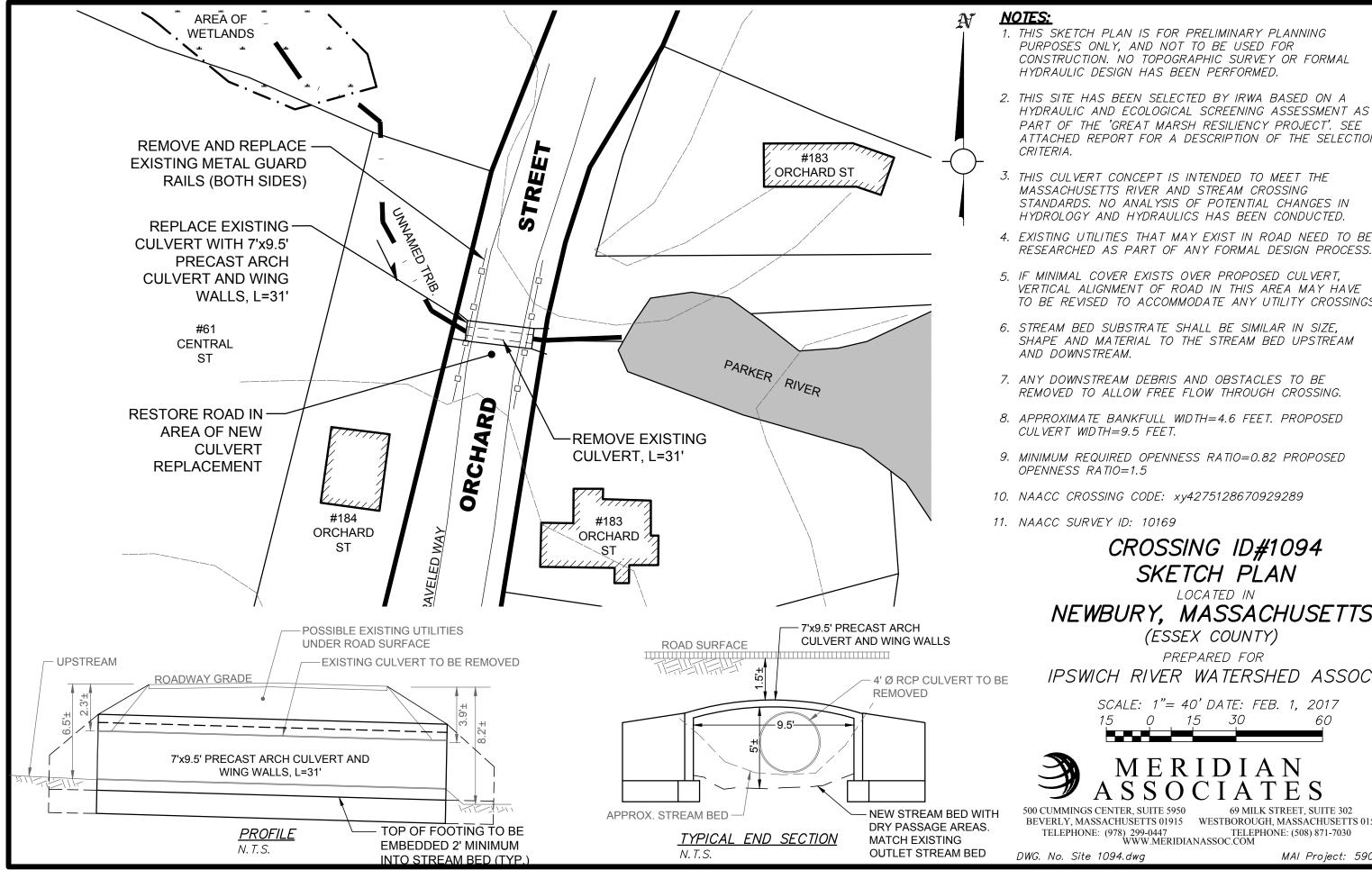
SCALE: 1"= 40' DATE: FEB. 1, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.


VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

IPSWICH RIVER WATERSHED ASSOC.

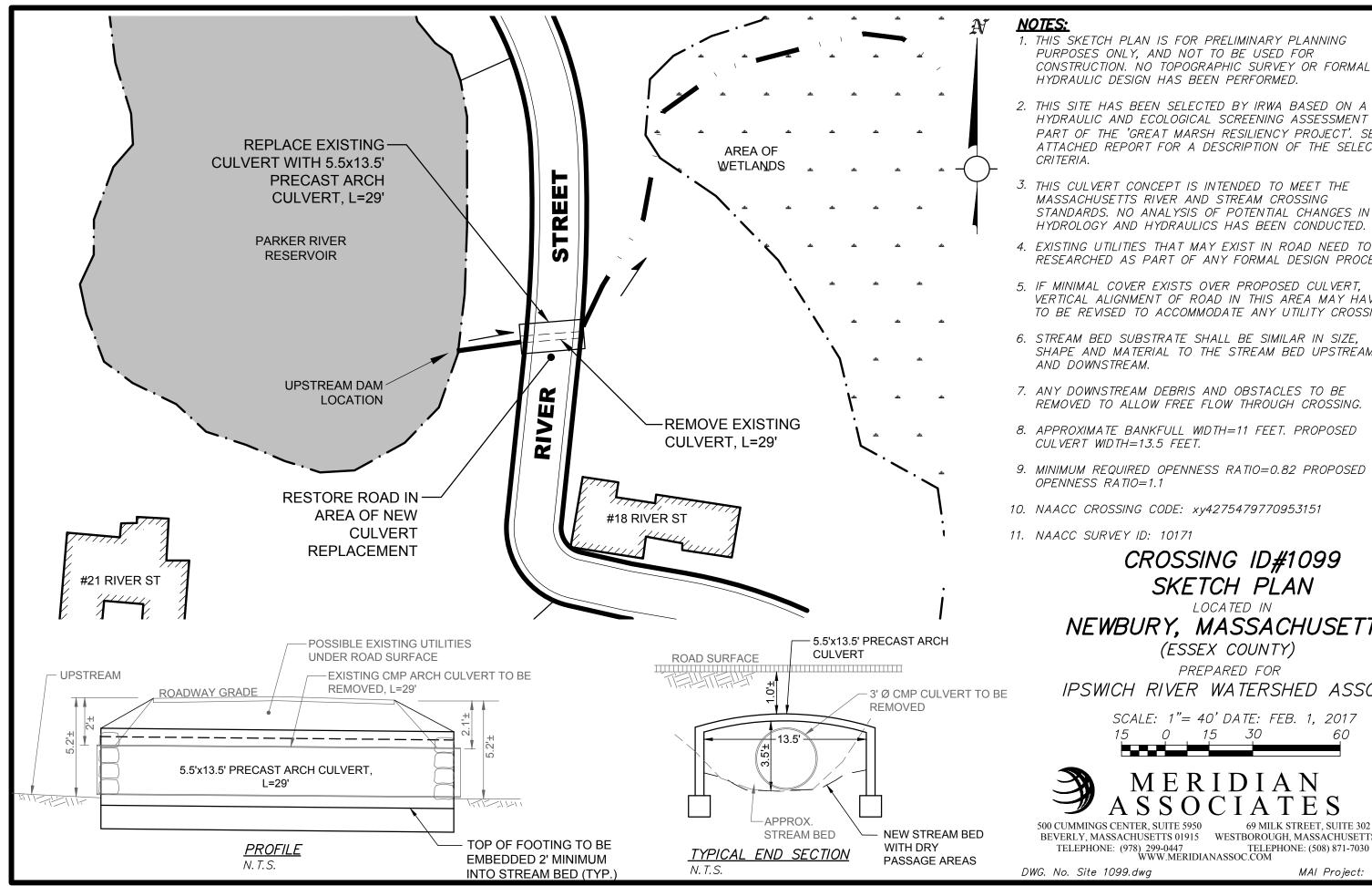
SCALE: 1"= 40' DATE: FEB. 1, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

# NEWBURY, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 1, 2017 60

69 MILK STREET, SUITE 302 BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

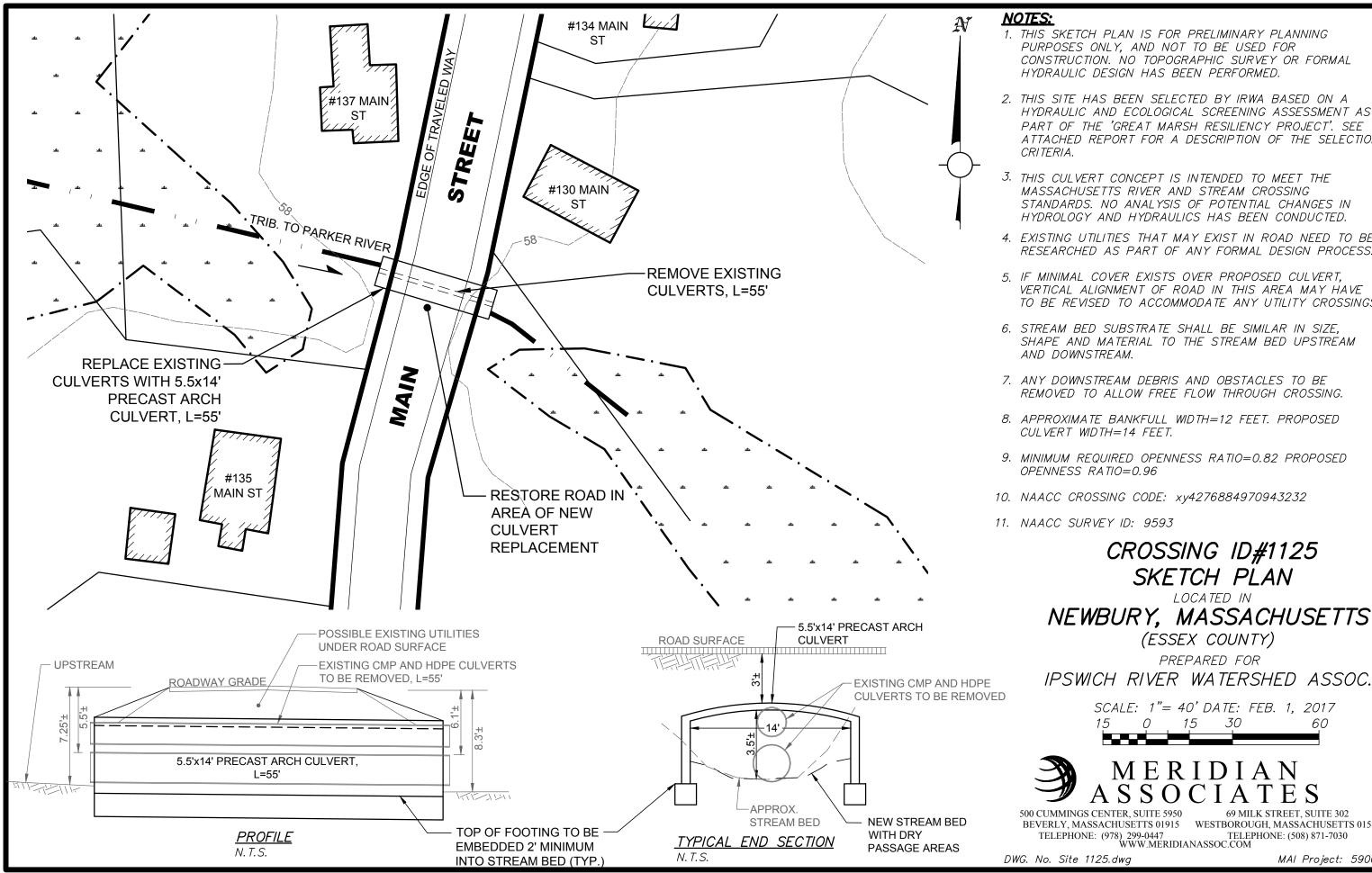


HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

NEWBURY, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 1, 2017 60

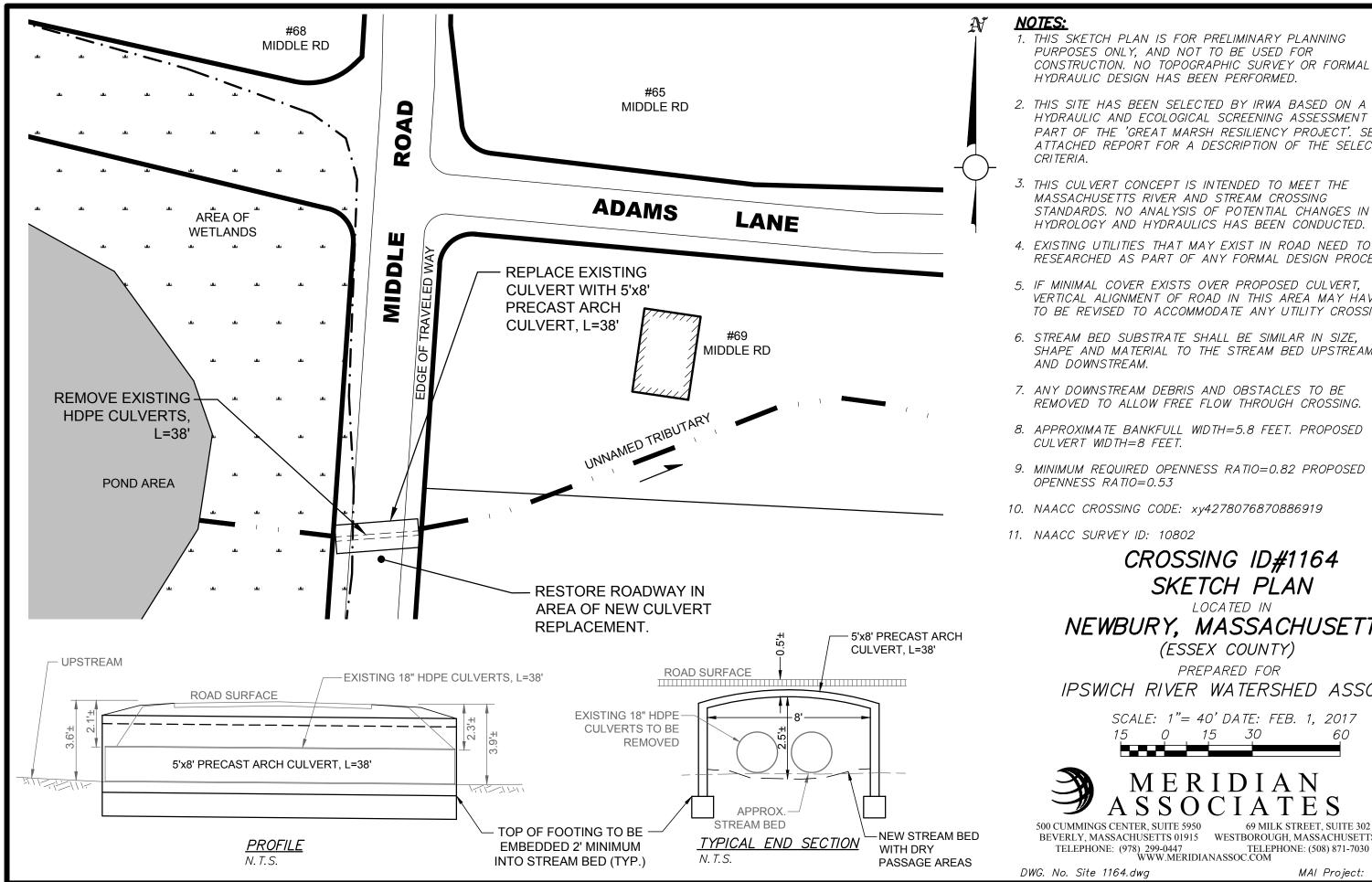
BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN HYDROLOGY AND HYDRAULICS HAS BEEN CONDUCTED.

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.


VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 1, 2017 60

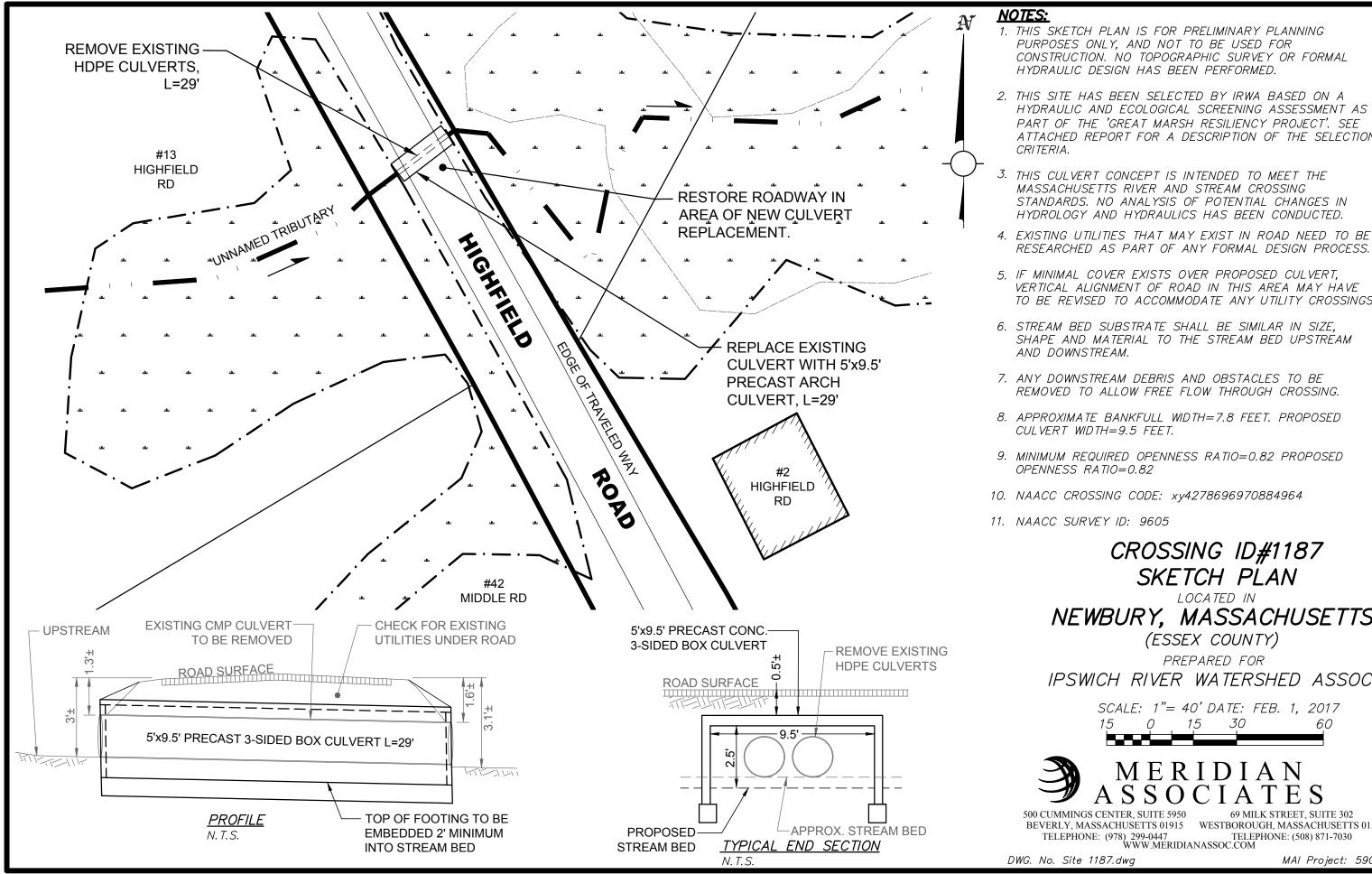
BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

NEWBURY, MASSACHUSETTS

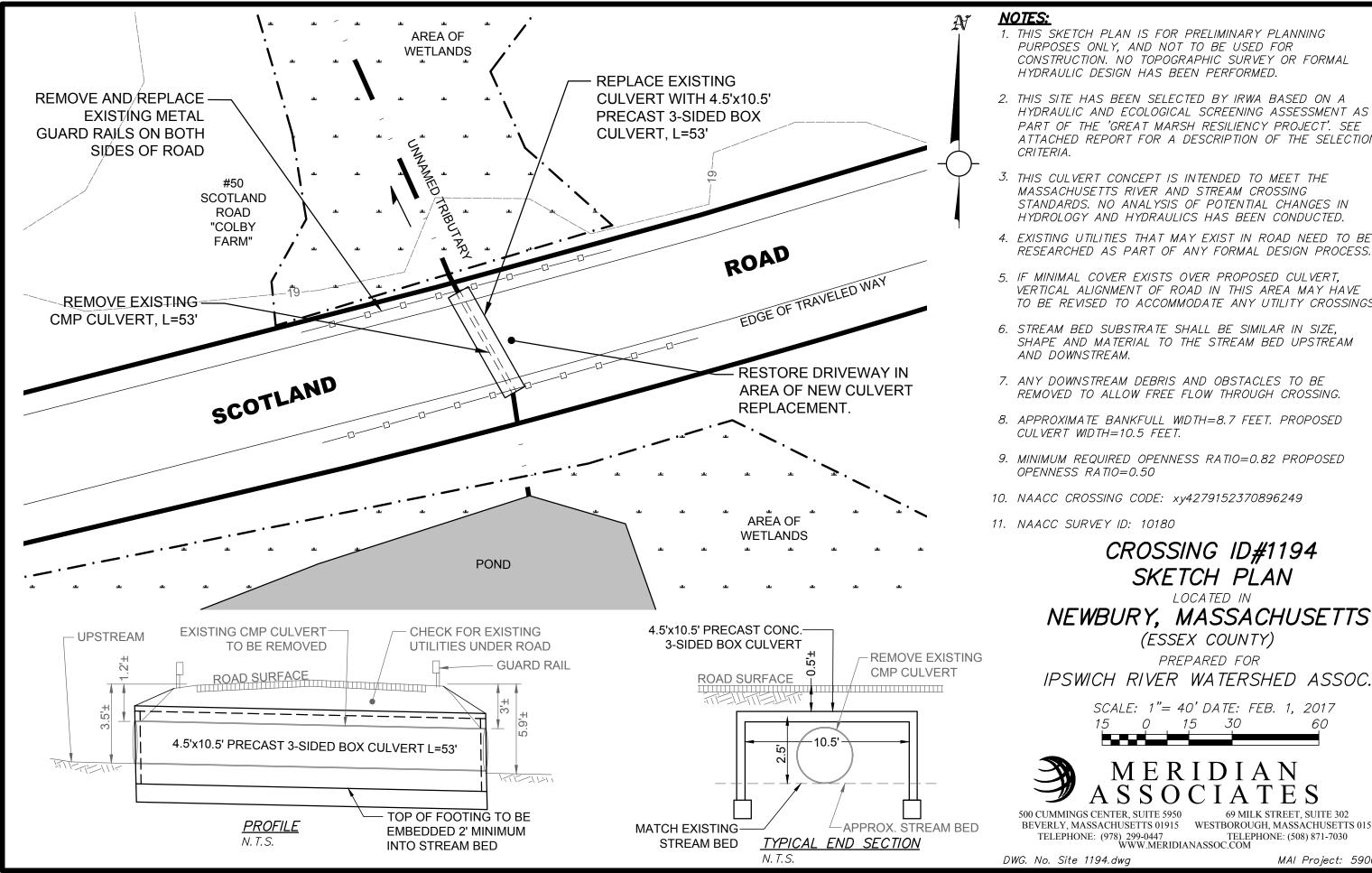
IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 1, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 WWW.MERIDIANASSOC.COM



RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.


VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

## NEWBURY, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 1, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN

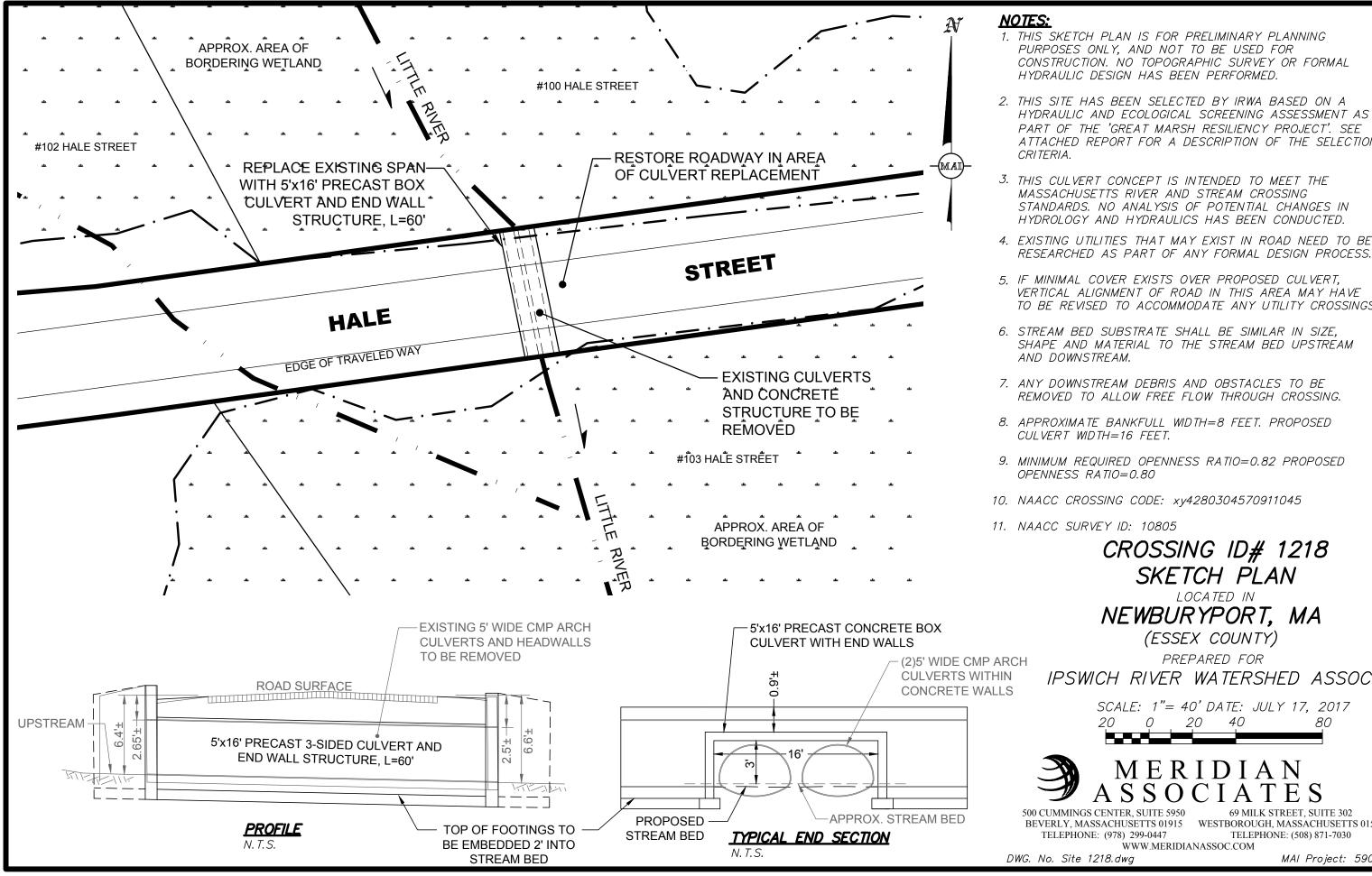
RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

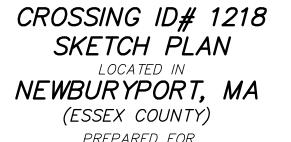
## NEWBURY, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.


60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

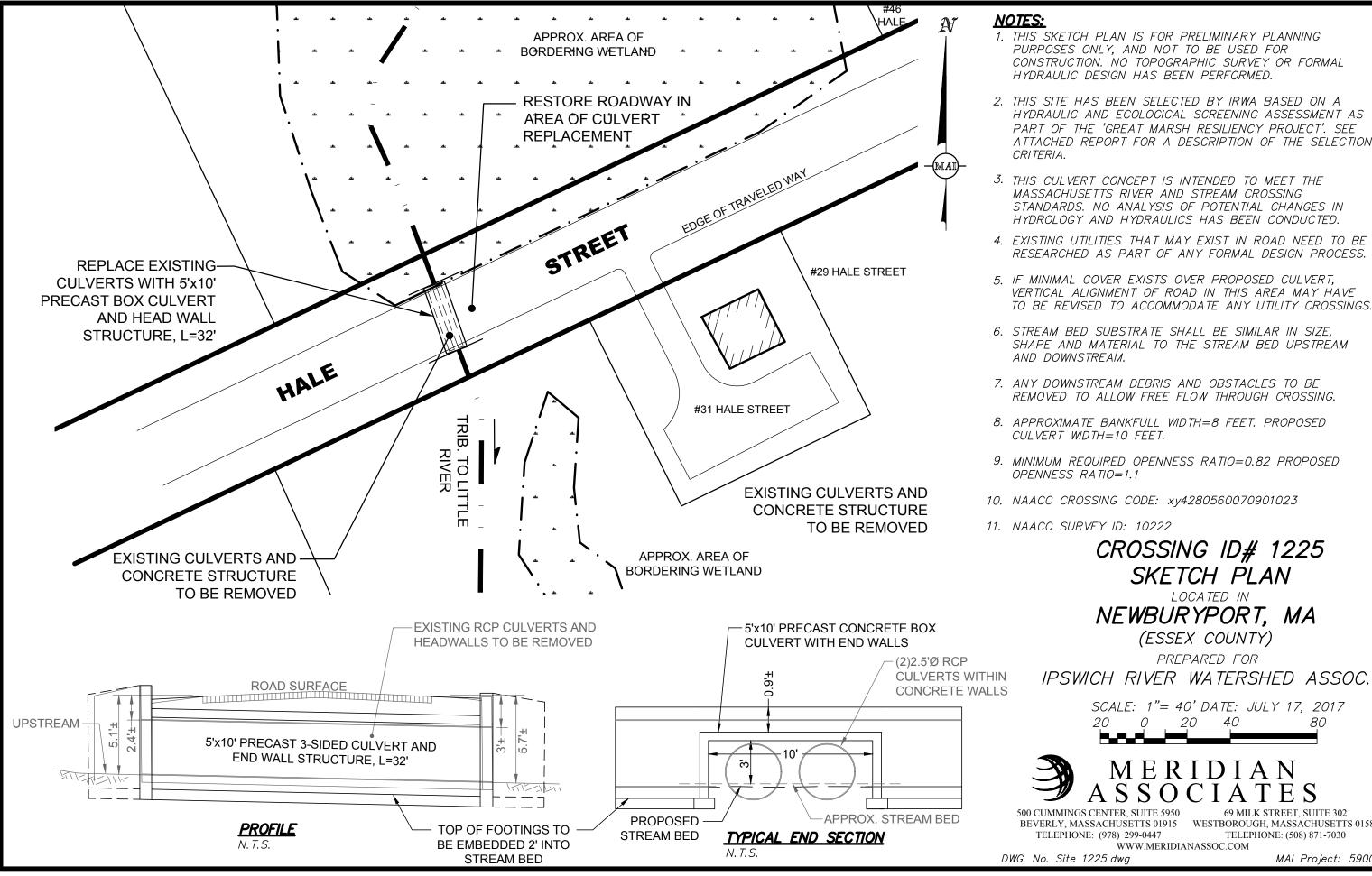
Newburyport Designs


Conceptual designs for the replacement of select road-stream crossings in the City of Newburyport, MA

2 pages



RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.


TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.



IPSWICH RIVER WATERSHED ASSOC.

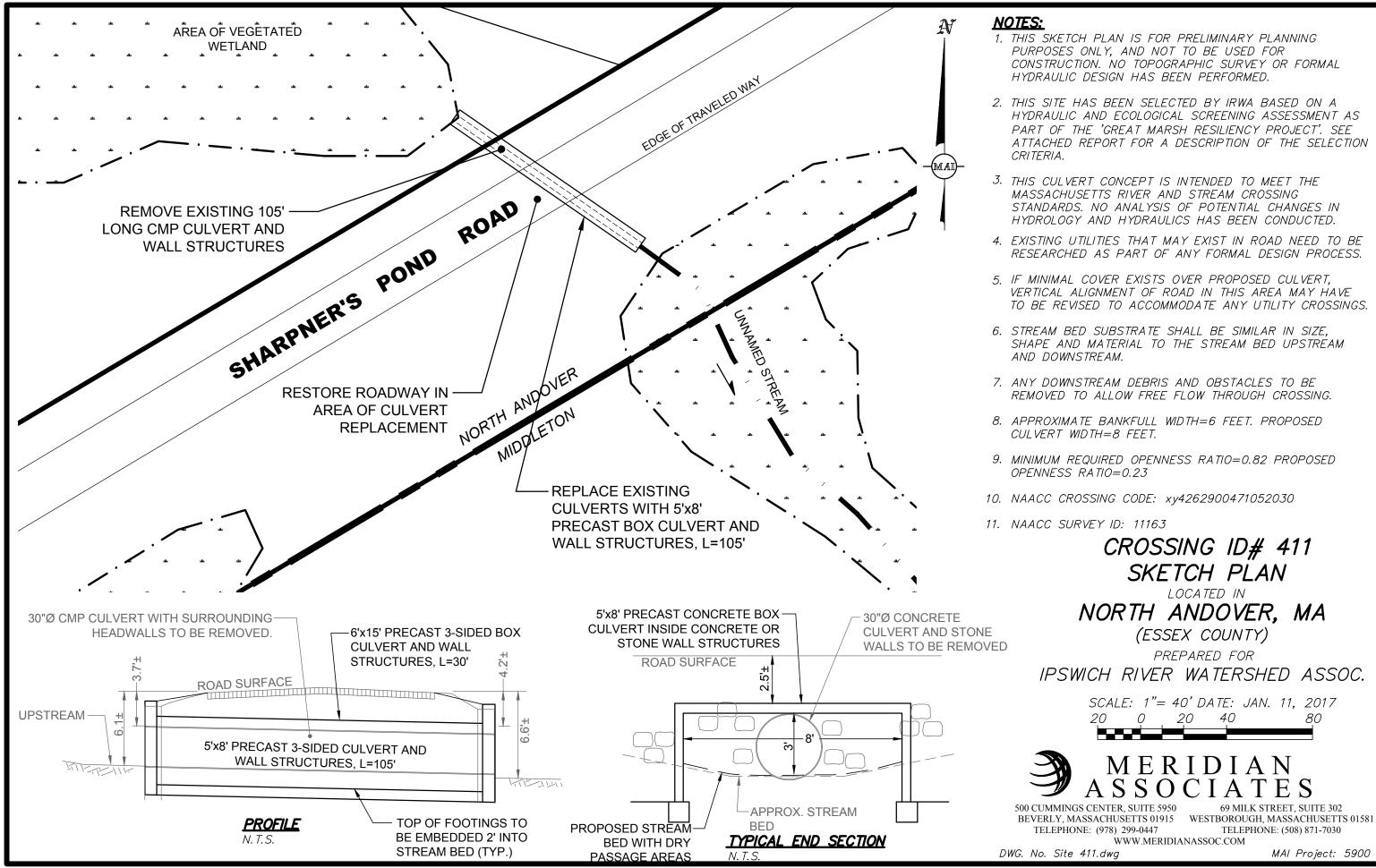
SCALE: 1"= 40' DATE: JULY 17, 2017

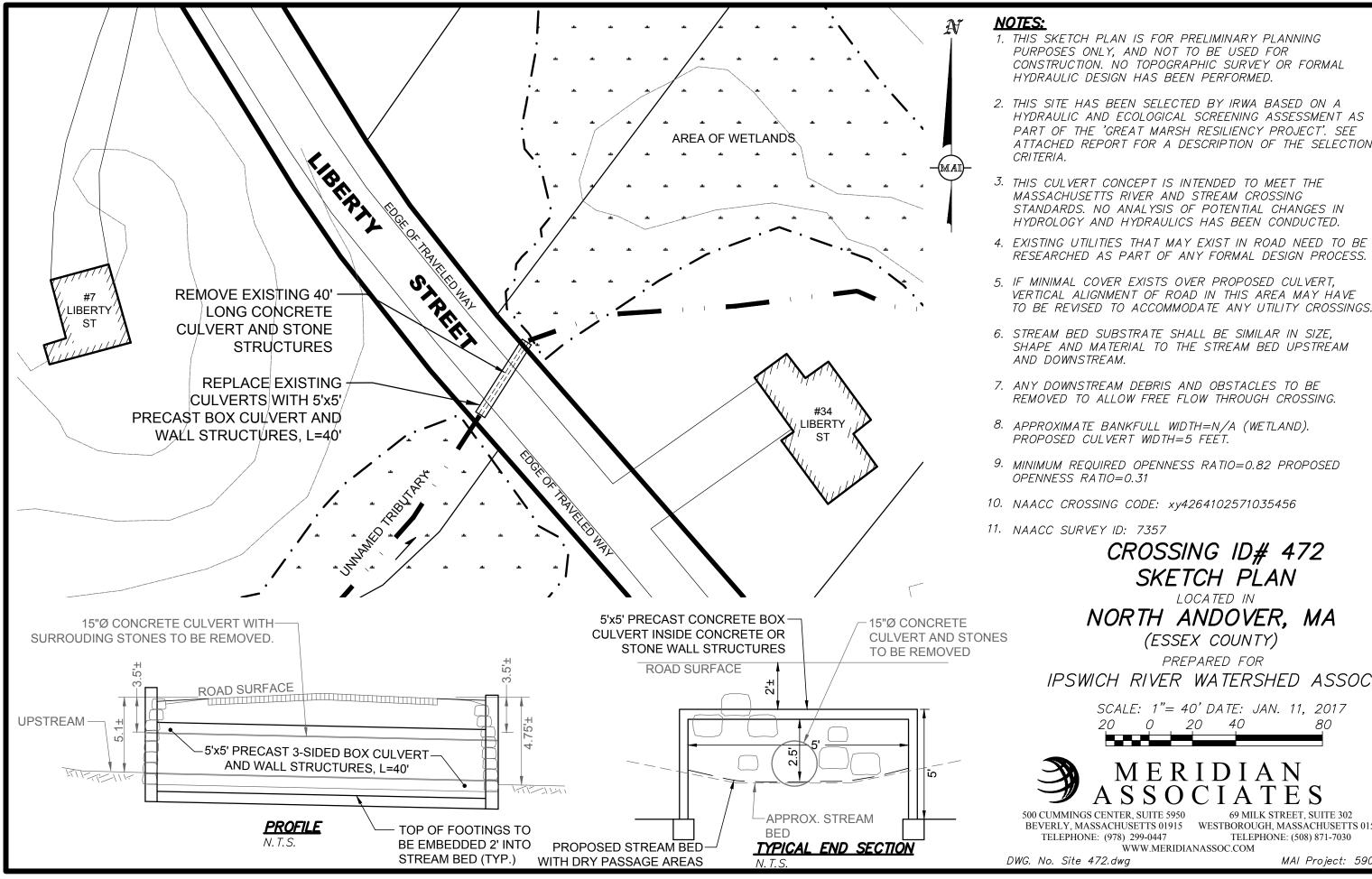
BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030



ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION




IPSWICH RIVER WATERSHED ASSOC.

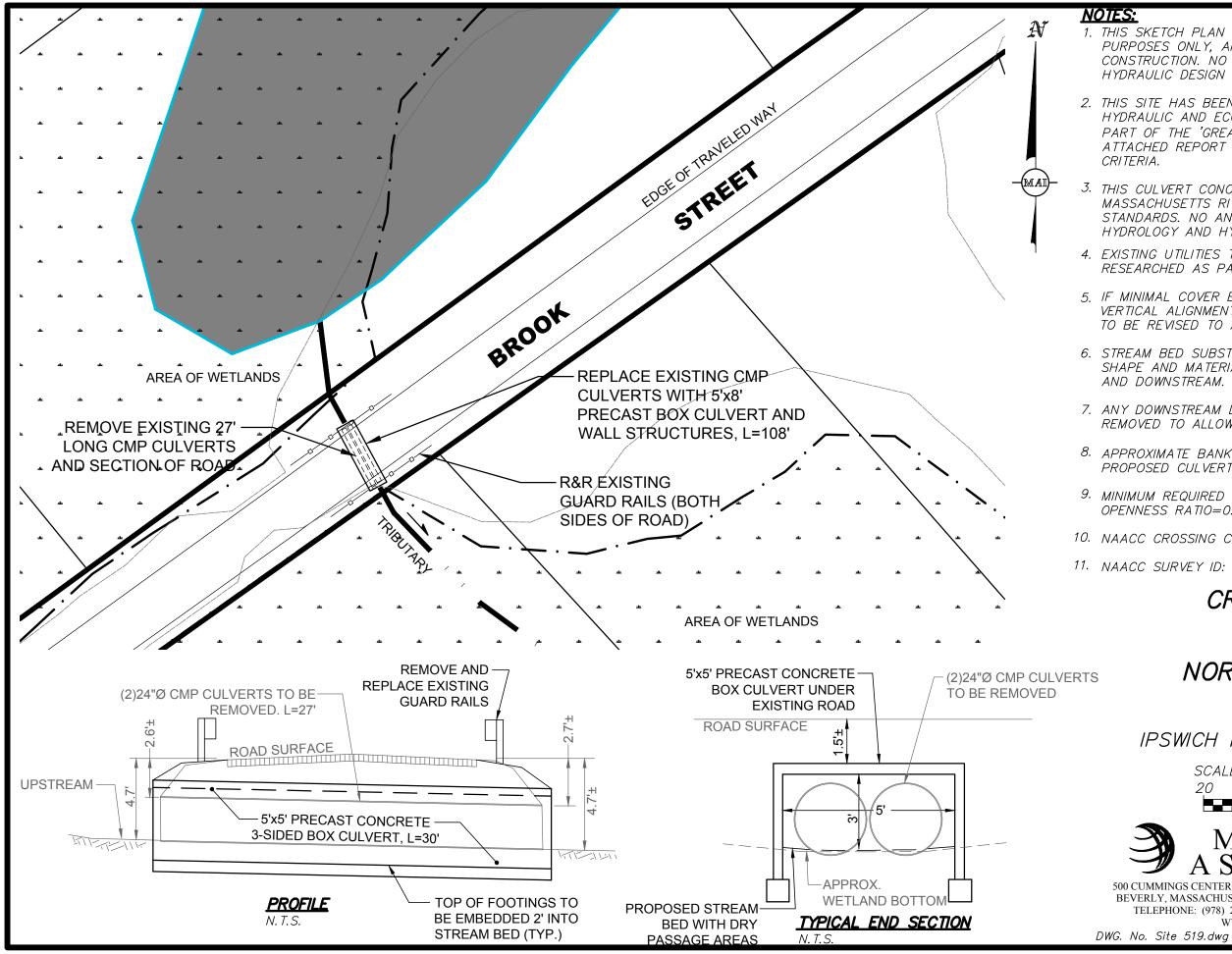

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030

North Andover Designs

Conceptual designs for the replacement of select road-stream crossings in the Town of North Andover, MA

10 pages






ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: JAN. 11, 2017

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030



1. THIS SKETCH PLAN IS FOR PRELIMINARY PLANNING PURPOSES ONLY. AND NOT TO BE USED FOR CONSTRUCTION. NO TOPOGRAPHIC SURVEY OR FORMAL HYDRAULIC DESIGN HAS BEEN PERFORMED.

2. THIS SITE HAS BEEN SELECTED BY IRWA BASED ON A HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

3. THIS CULVERT CONCEPT IS INTENDED TO MEET THE MASSACHUSETTS RIVER AND STREAM CROSSING STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN HYDROLOGY AND HYDRAULICS HAS BEEN CONDUCTED.

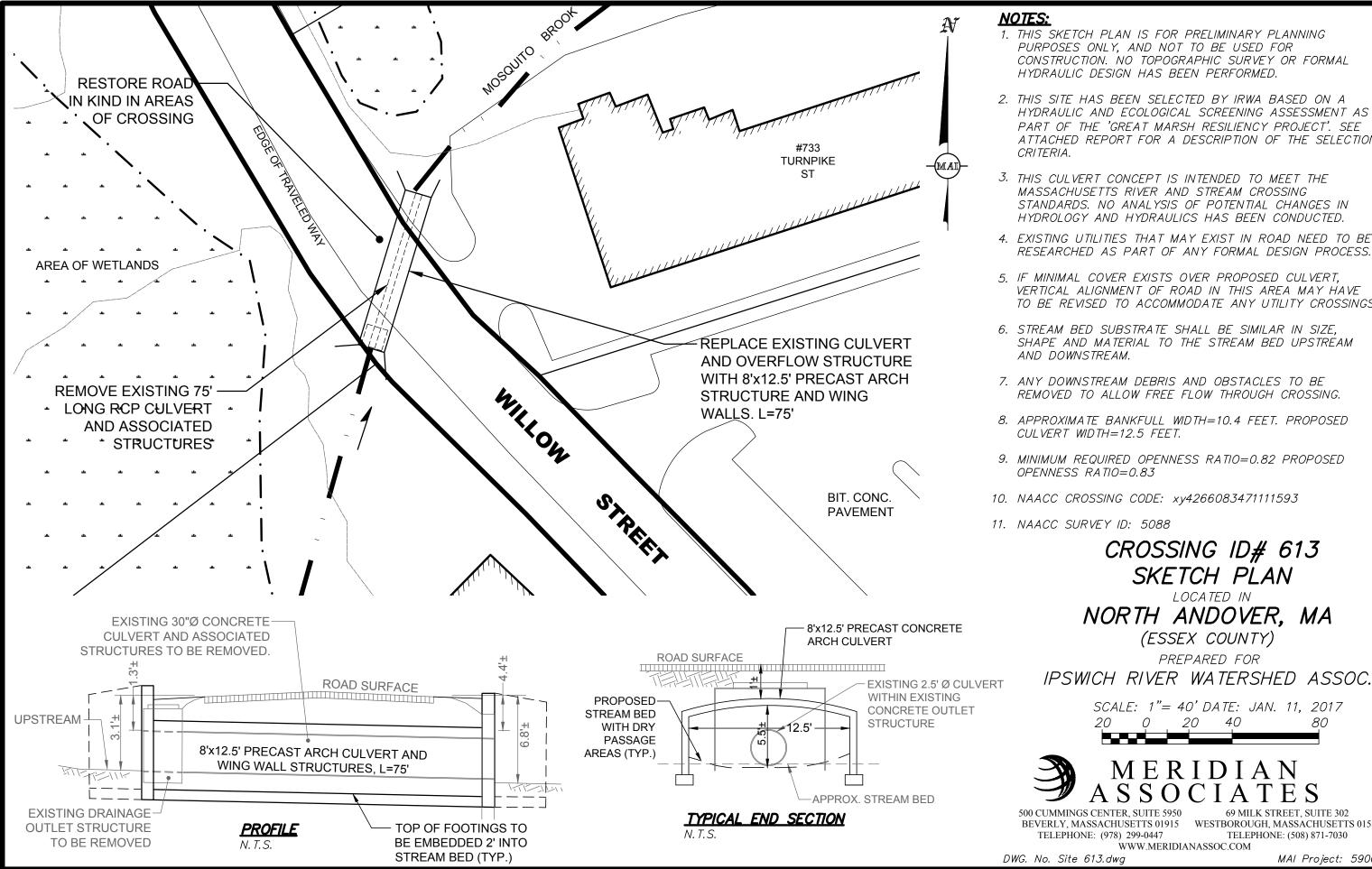
4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

5. IF MINIMAL COVER EXISTS OVER PROPOSED CULVERT, VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

6. STREAM BED SUBSTRATE SHALL BE SIMILAR IN SIZE, SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM AND DOWNSTREAM.

7. ANY DOWNSTREAM DEBRIS AND OBSTACLES TO BE REMOVED TO ALLOW FREE FLOW THROUGH CROSSING.


8. APPROXIMATE BANKFULL WIDTH=N/A (WETLAND). PROPOSED CULVERT WIDTH=5 FEET.


9. MINIMUM REQUIRED OPENNESS RATIO=0.82 PROPOSED OPENNESS RATIO=0.50

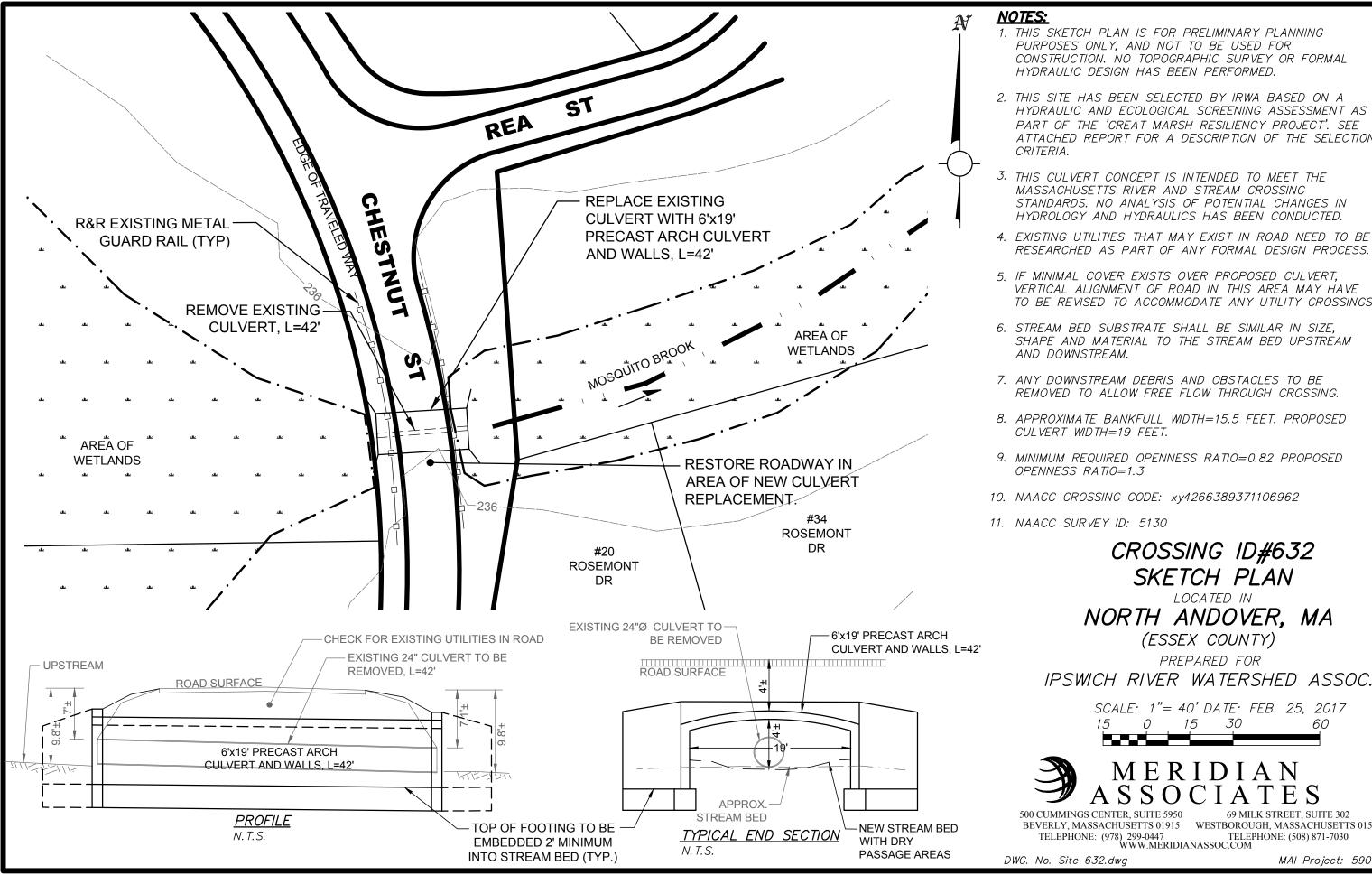
10. NAACC CROSSING CODE: xy4264798771088006

11. NAACC SURVEY ID: 5095

### CROSSING ID# 519 SKETCH PLAN LOCATED IN NORTH ANDOVER, MA (ESSEX COUNTY) PREPARED FOR IPSWICH RIVER WATERSHED ASSOC. SCALE: 1"= 40' DATE: JAN. 11, 2017 20 40 80 MERIDIAN <u>S</u> O C I 500 CUMMINGS CENTER, SUITE 5950 69 MILK STREET, SUITE 302 BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM MAI Project: 5900






RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

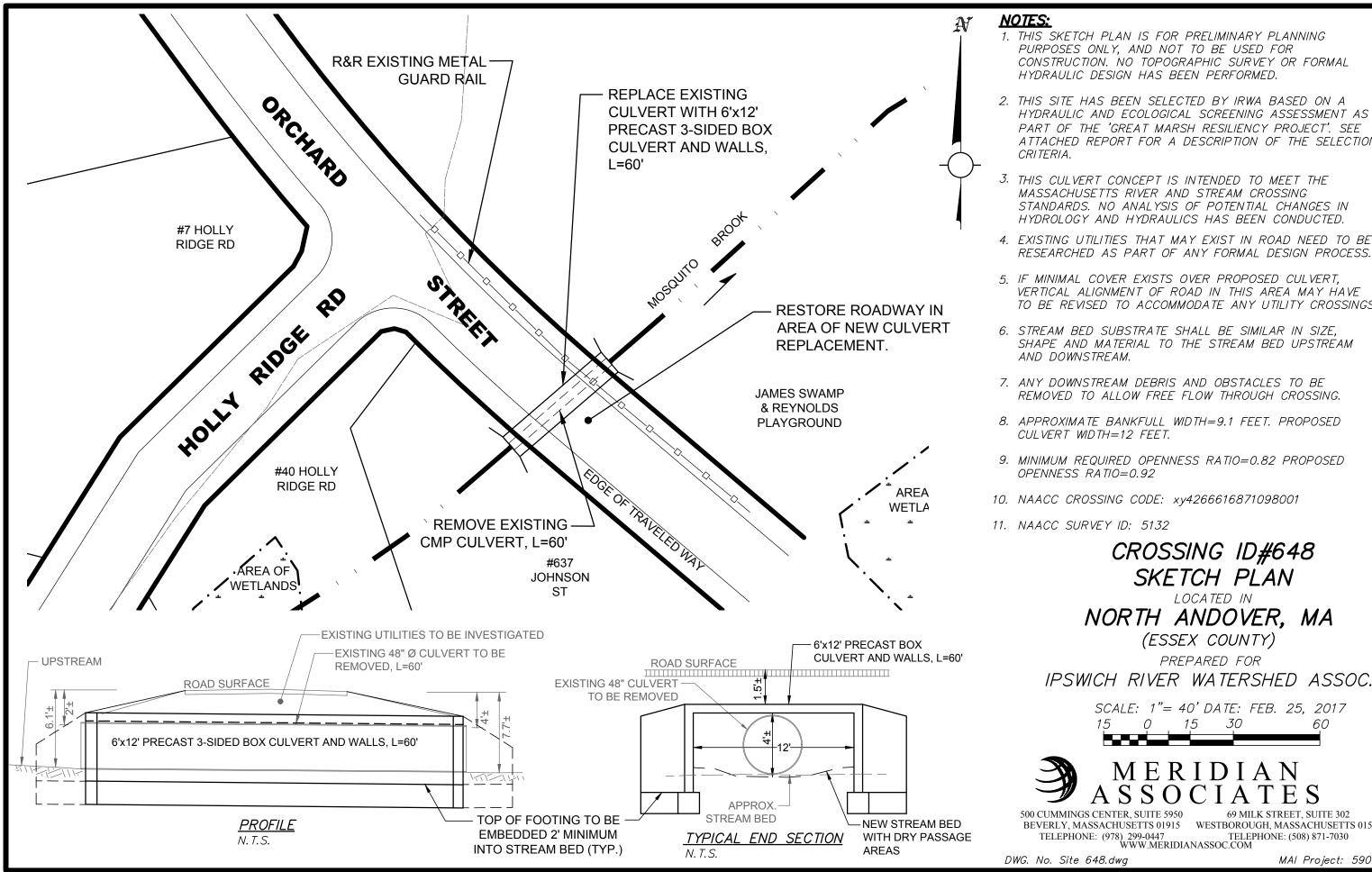
VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: JAN. 11, 2017 80

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030




4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

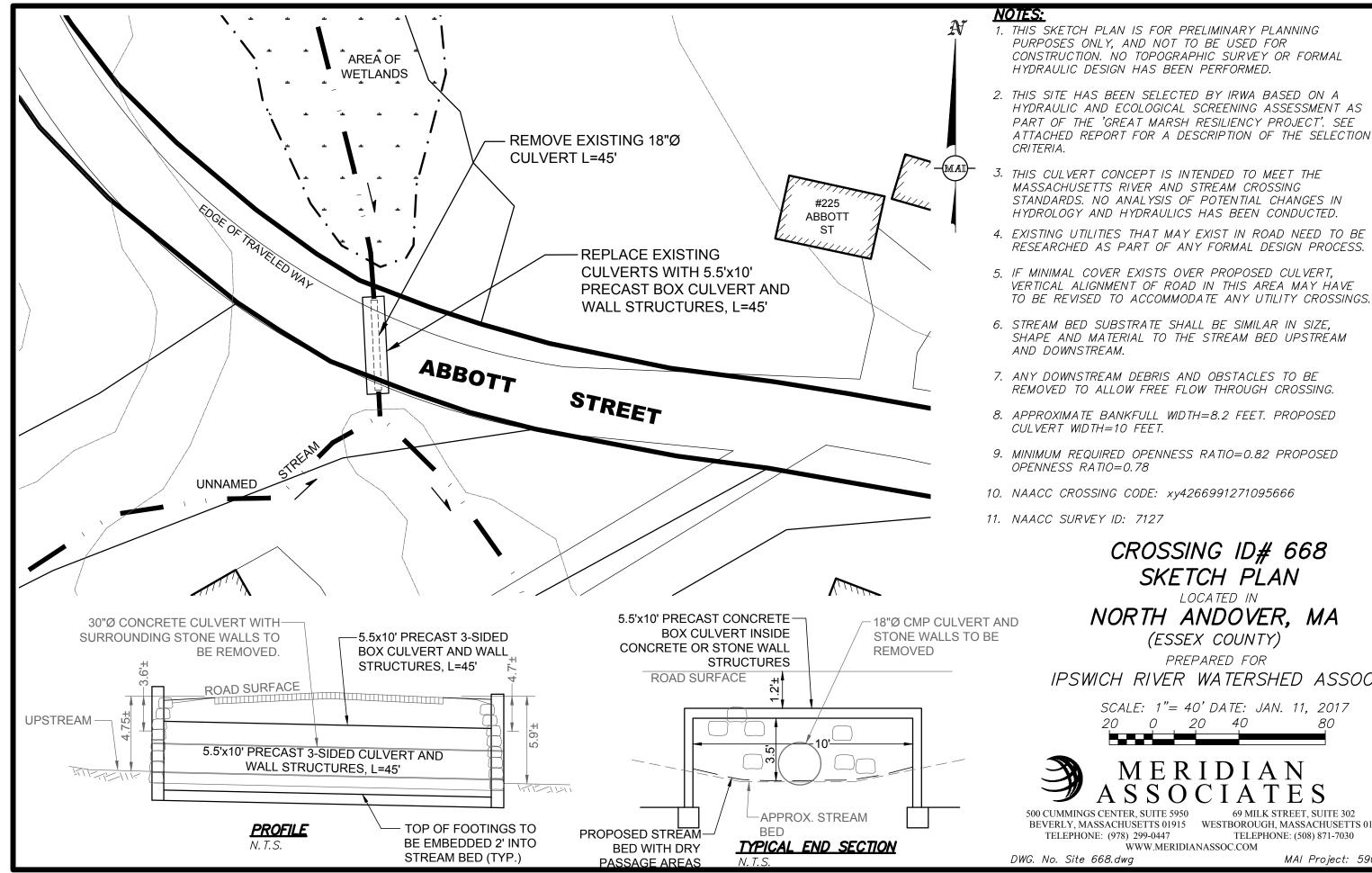
# NORTH ANDOVER, MA

SCALE: 1"= 40' DATE: FEB. 25, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



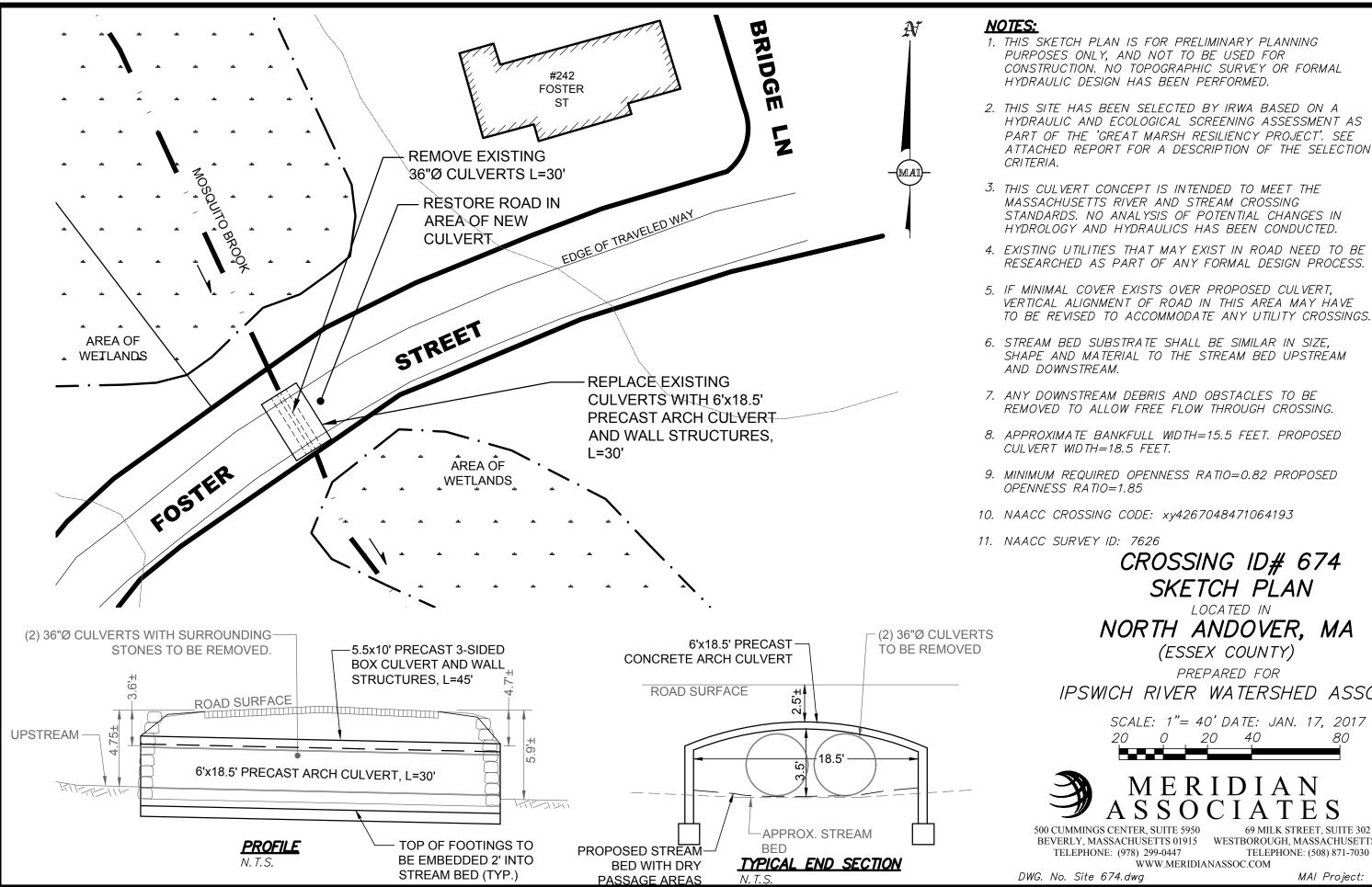
HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION


4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

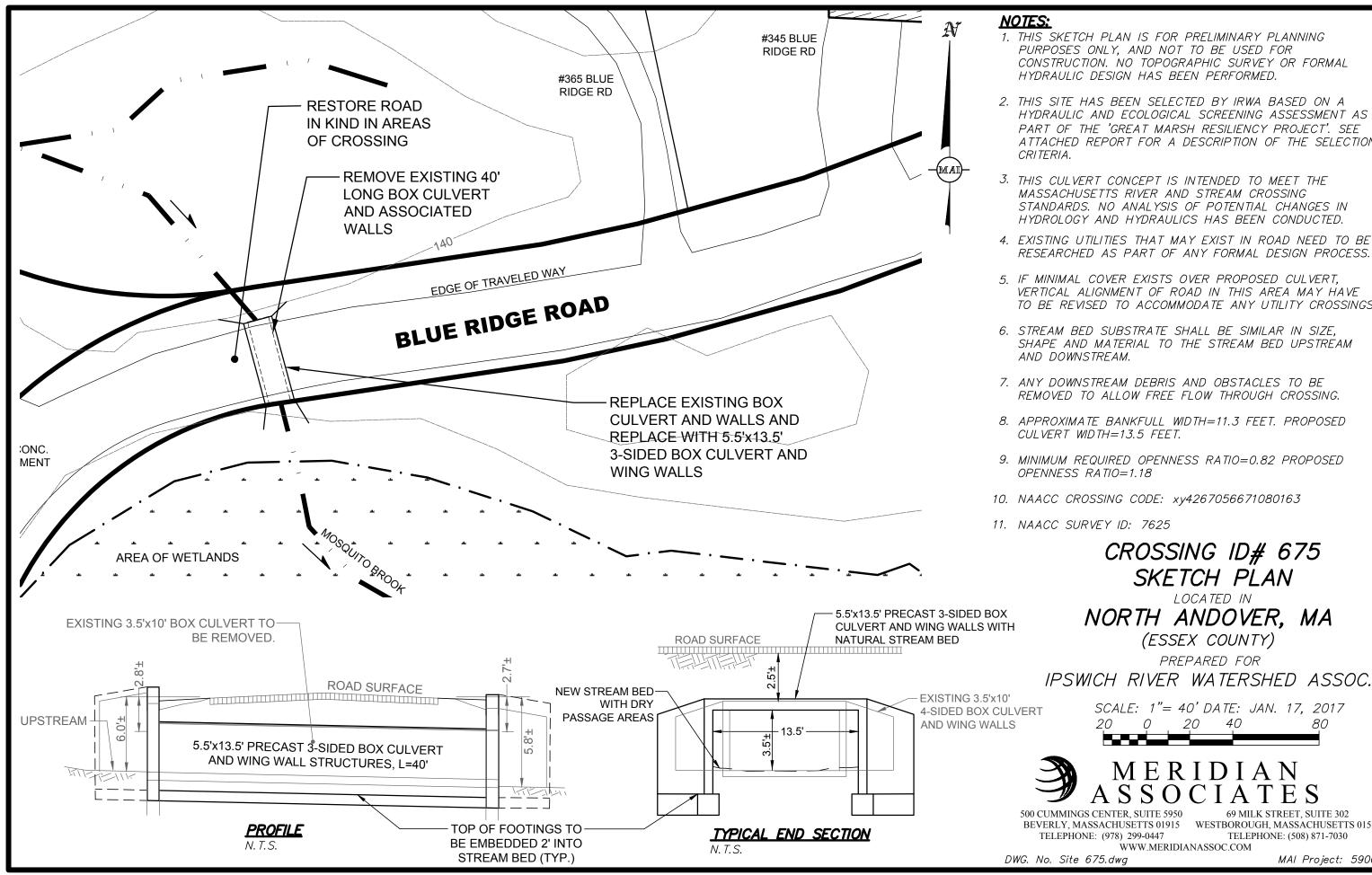
SCALE: 1"= 40' DATE: FEB. 25, 2017 60


BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: JAN. 11, 2017


BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030



IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: JAN. 17, 2017

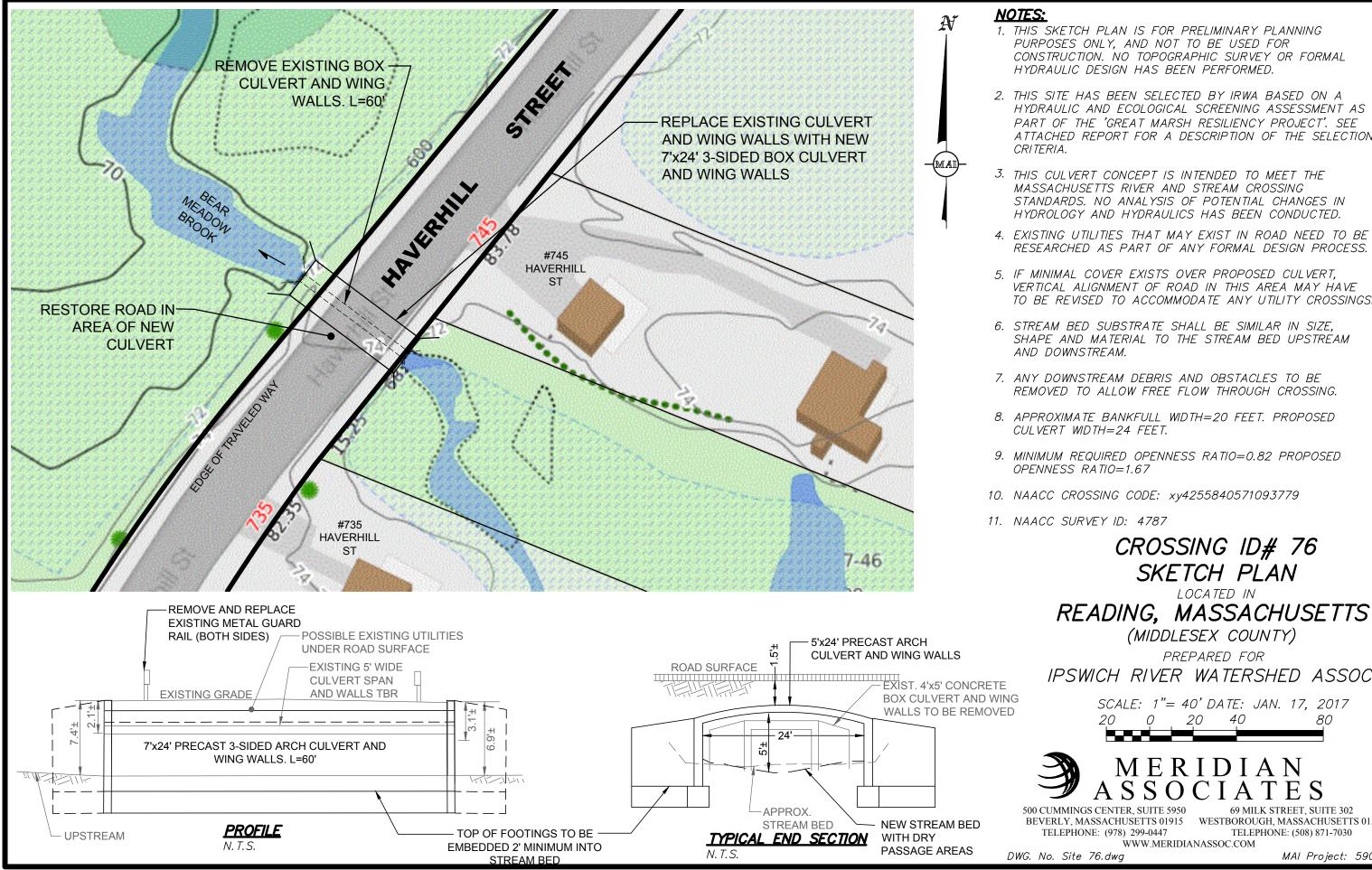
BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030



RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

IPSWICH RIVER WATERSHED ASSOC.


SCALE: 1"= 40' DATE: JAN. 17, 2017

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030

# Reading Designs

Conceptual designs for the replacement of select road-stream crossings in the Town of Reading, MA

1 page

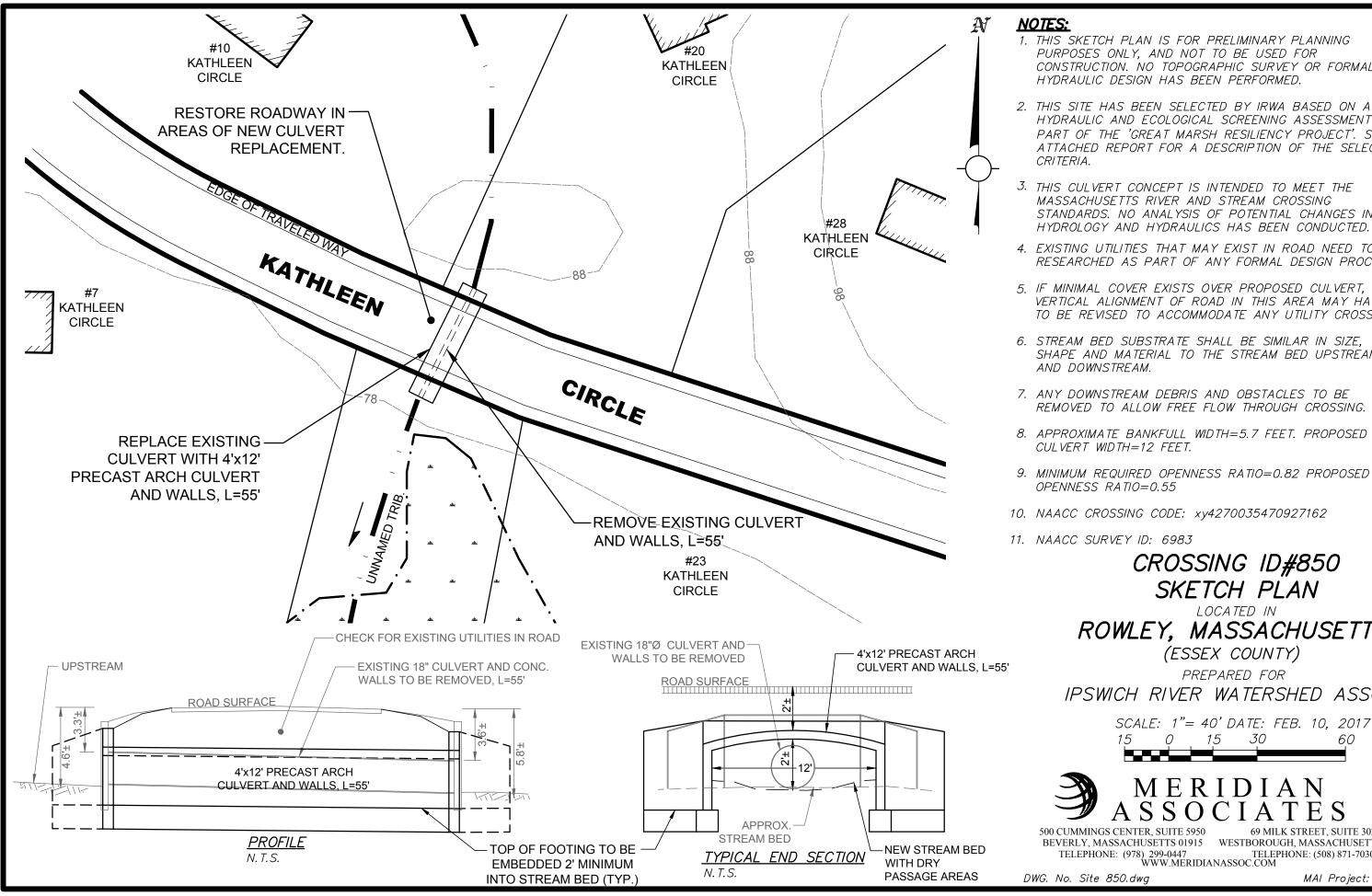


HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

IPSWICH RIVER WATERSHED ASSOC.


SCALE: 1"= 40' DATE: JAN. 17, 2017 80

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030

# Rowley Designs

Conceptual designs for the replacement of select road-stream crossings in the Town of Rowley, MA

6 pages

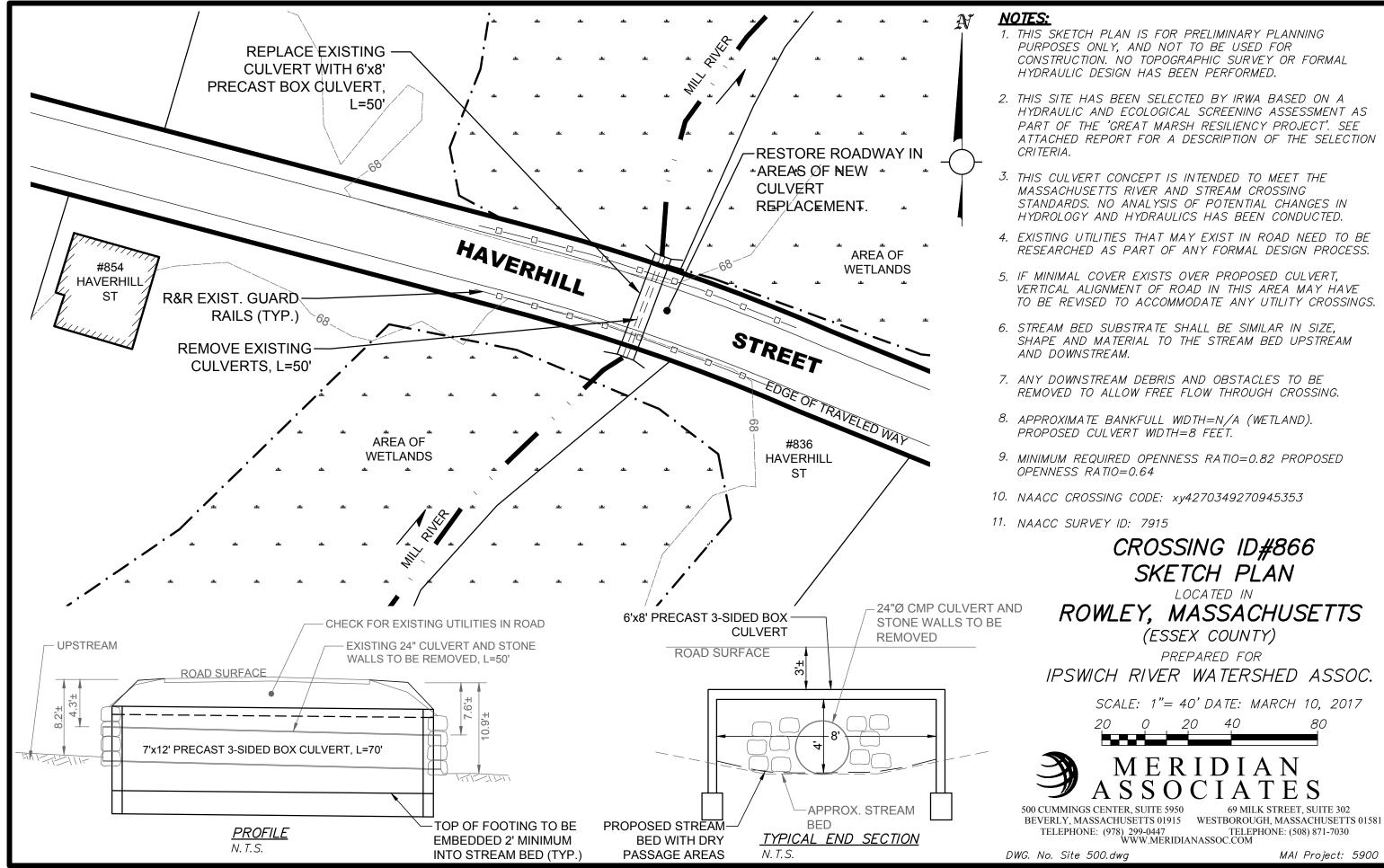


HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

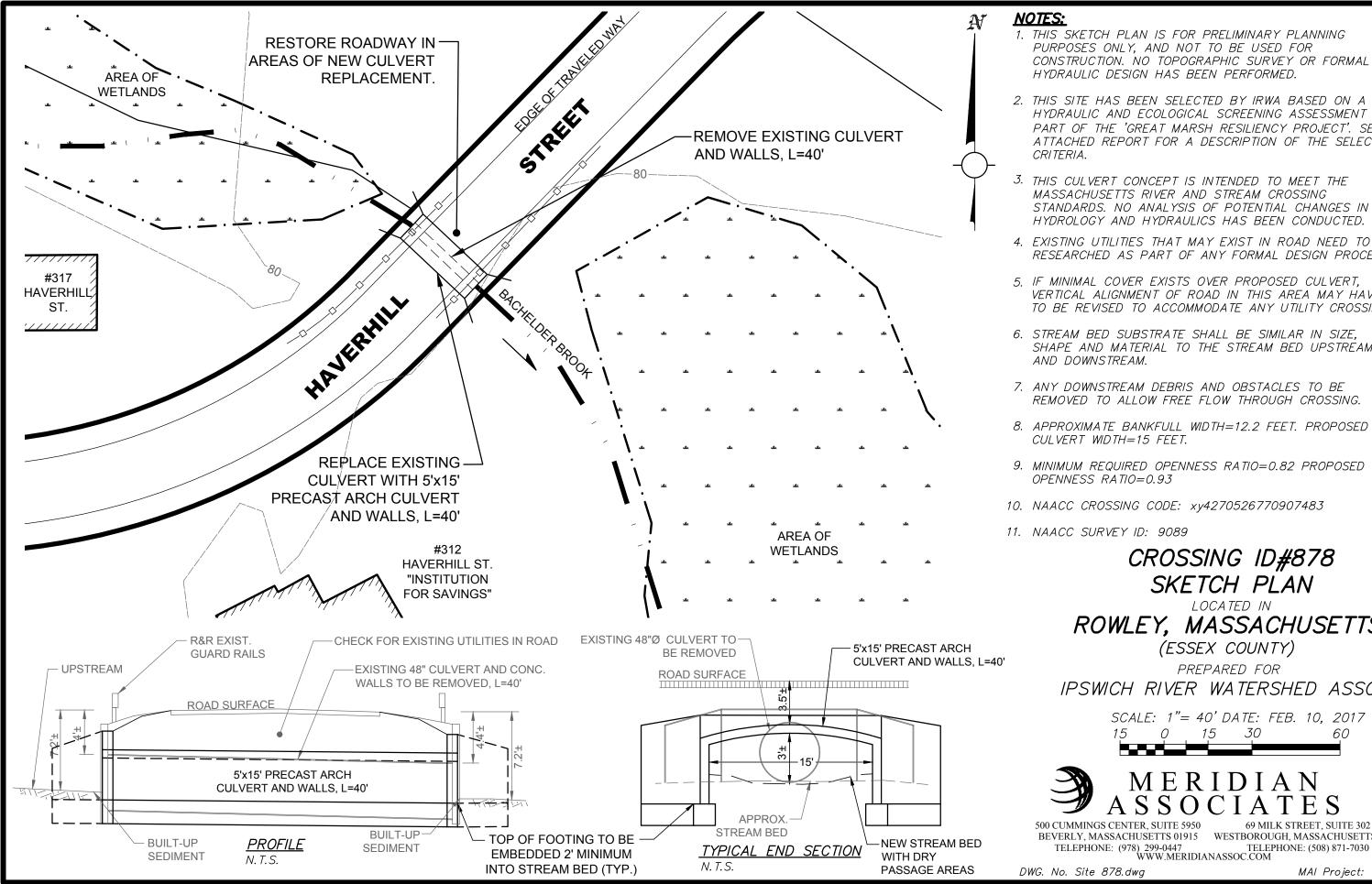
STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

ROWLEY, MASSACHUSETTS


IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 10, 2017 60

69 MILK STREET, SUITE 302 BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM





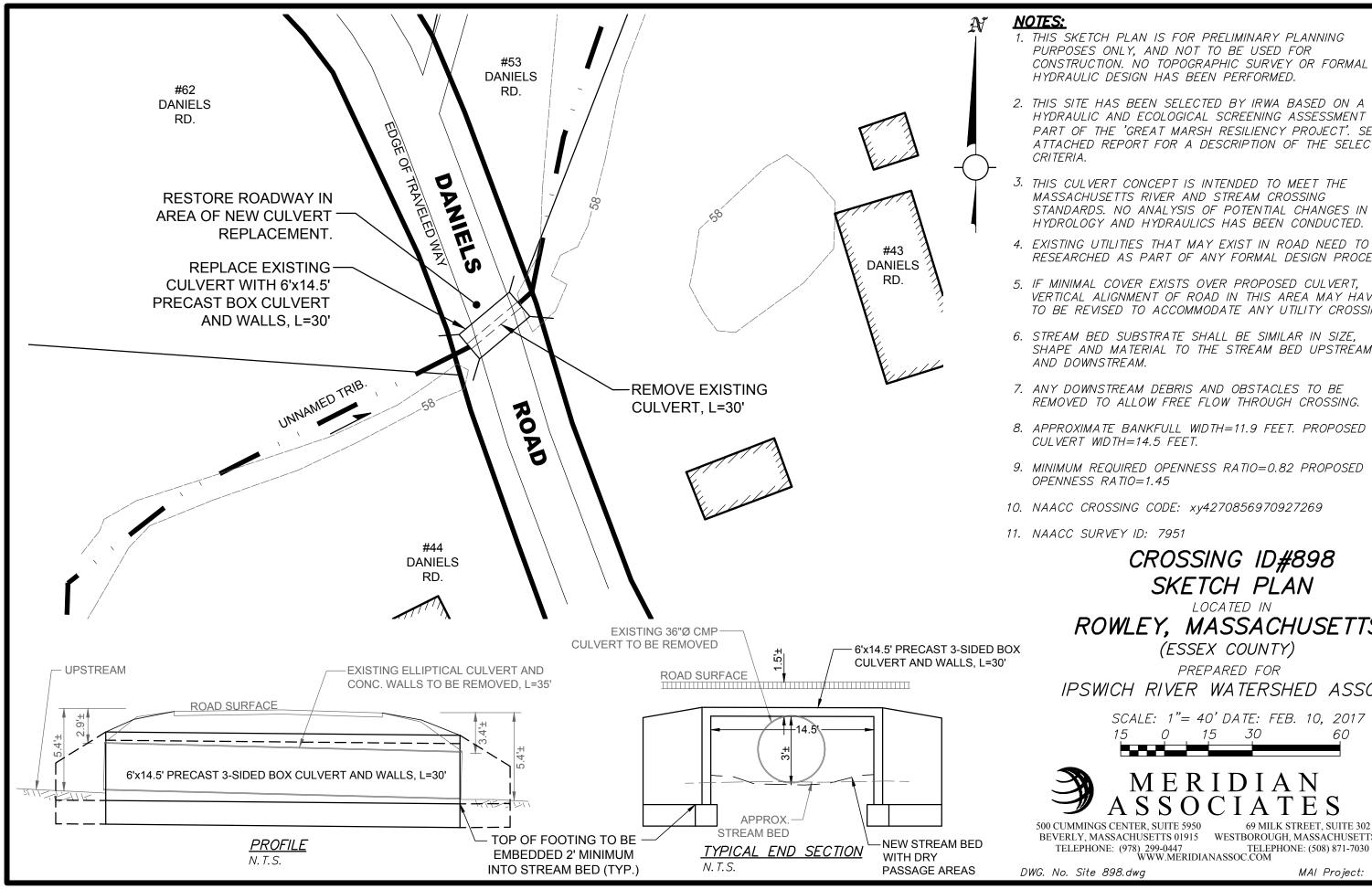


HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

ROWLEY, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 10, 2017 60

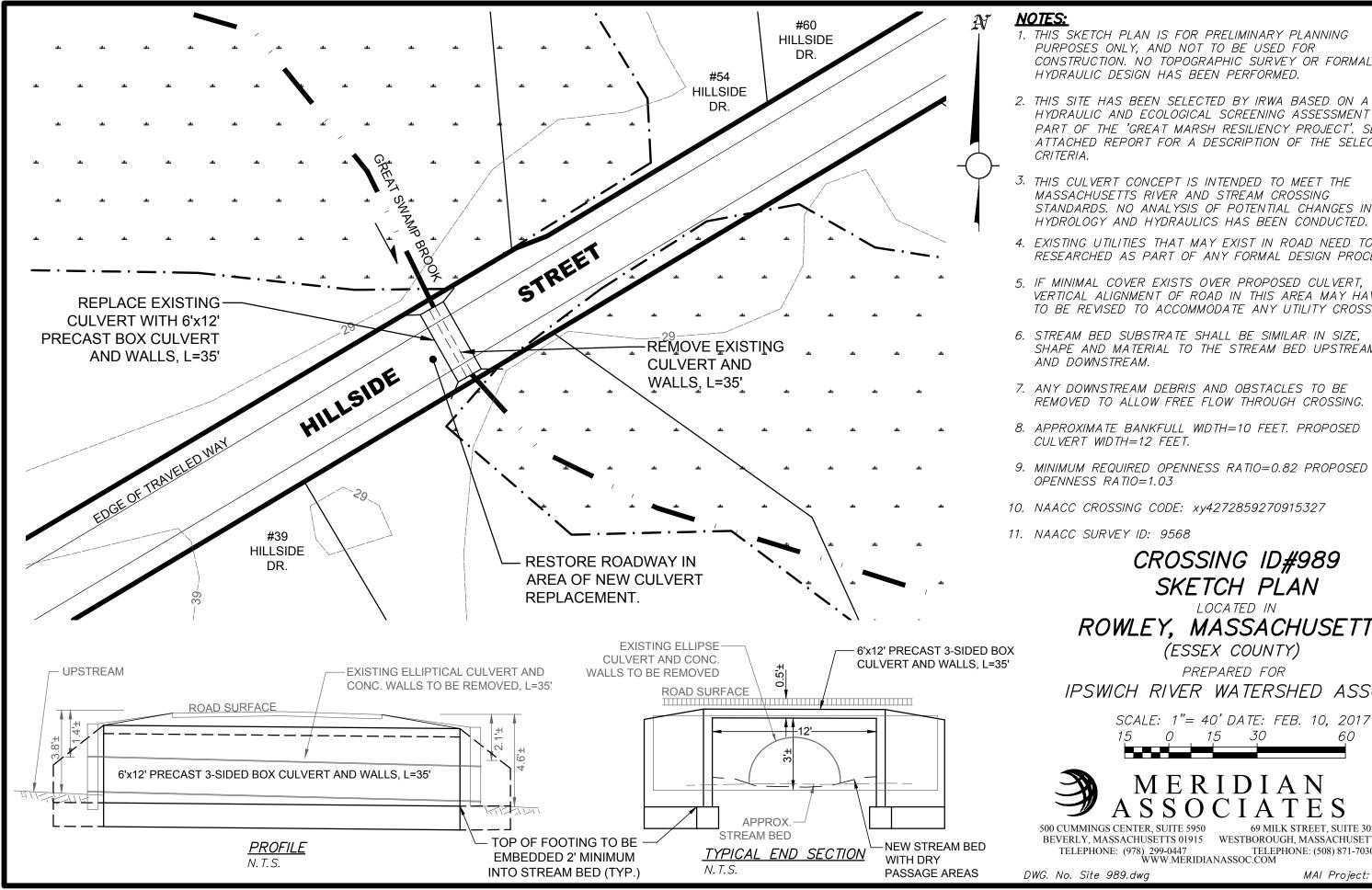
BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

ROWLEY, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 10, 2017 60

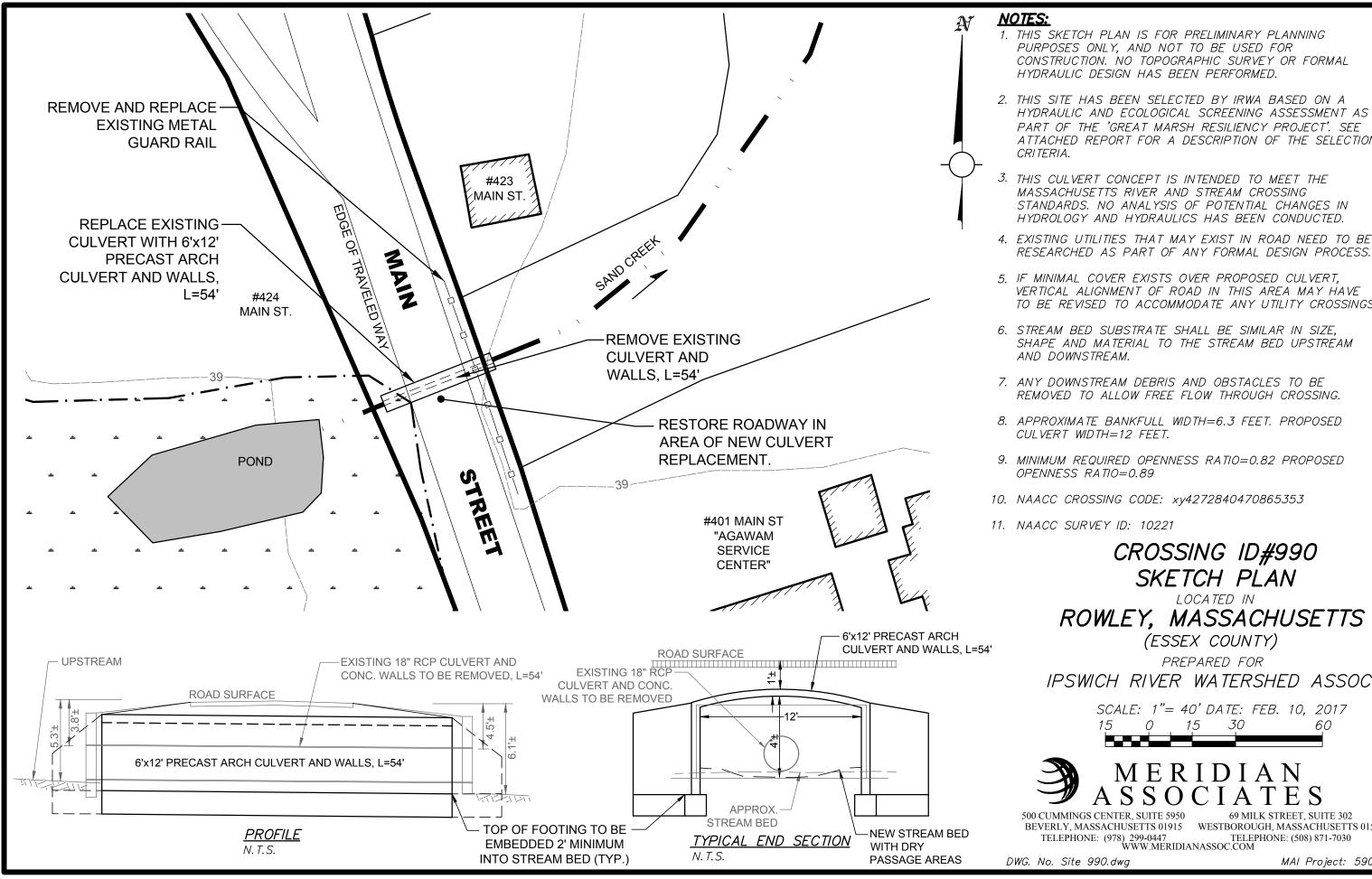
BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

ROWLEY, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 10, 2017 60

69 MILK STREET, SUITE 302 BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



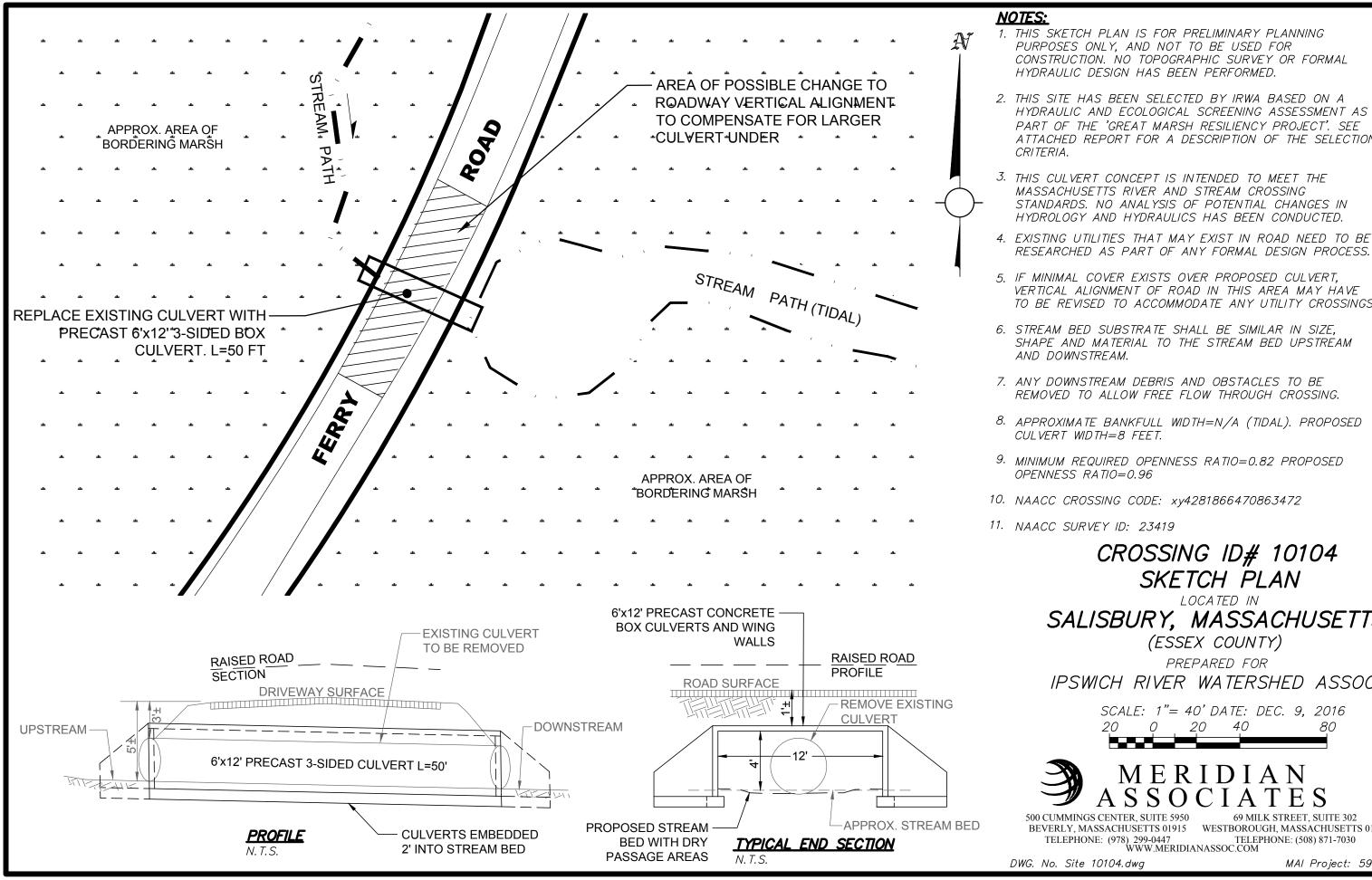
RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

ROWLEY, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.


SCALE: 1"= 40' DATE: FEB. 10, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

## Salisbury Designs

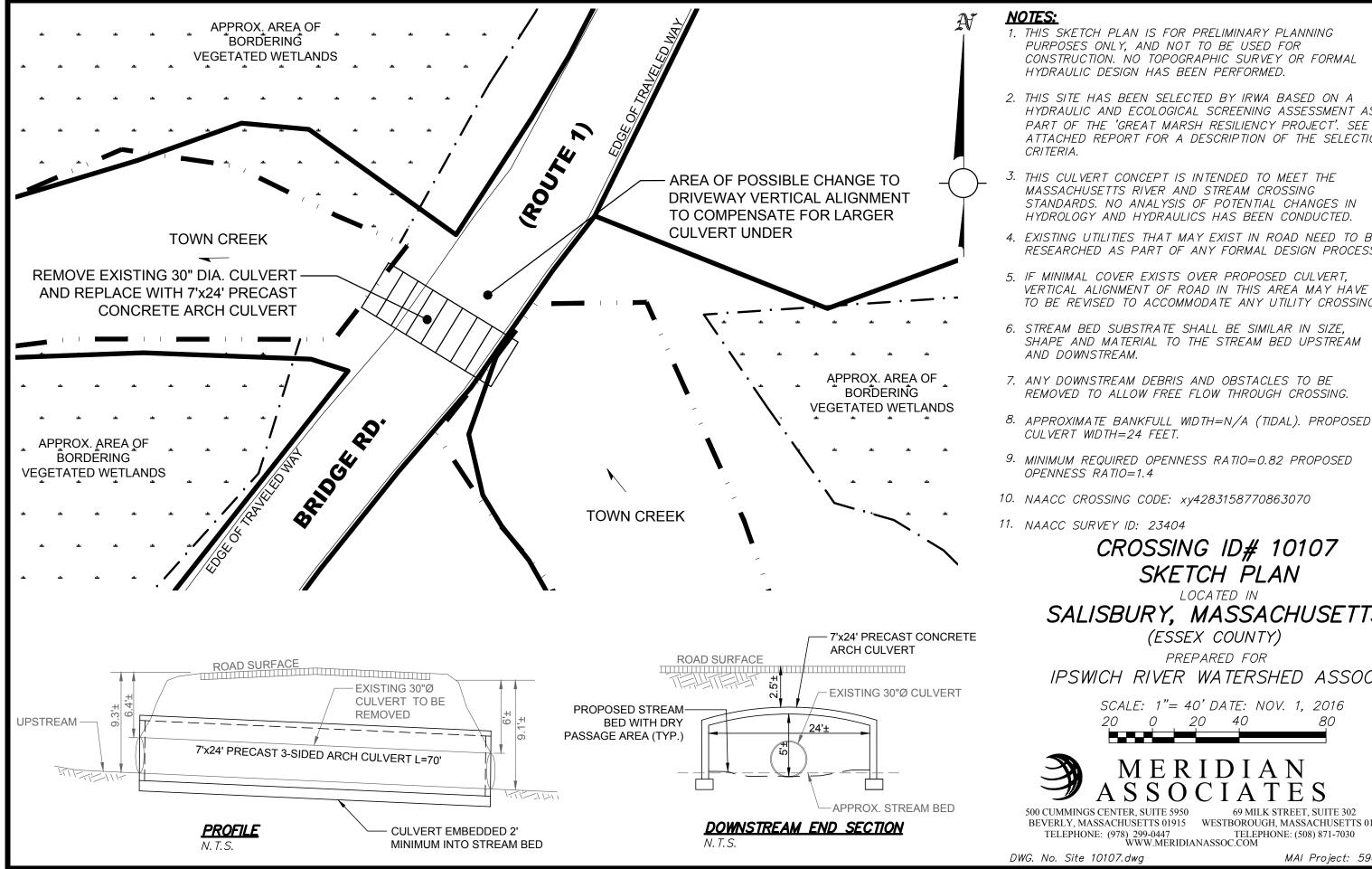
Conceptual designs for the replacement of select road-stream crossings in the Town of Salisbury, MA

5 pages



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.


TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SALISBURY, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: DEC. 9, 2016 80

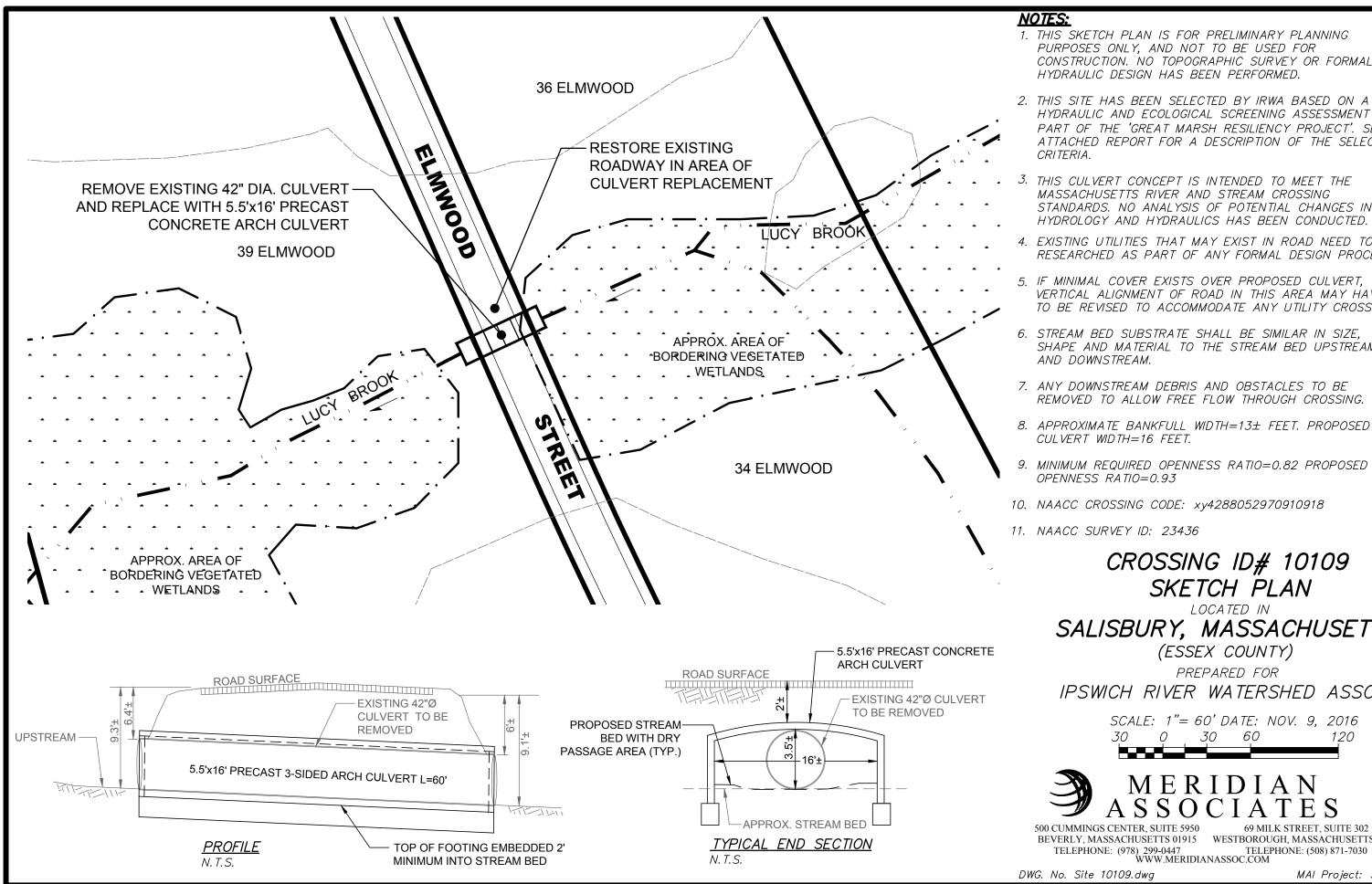
BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

SALISBURY, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: NOV. 1, 2016

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

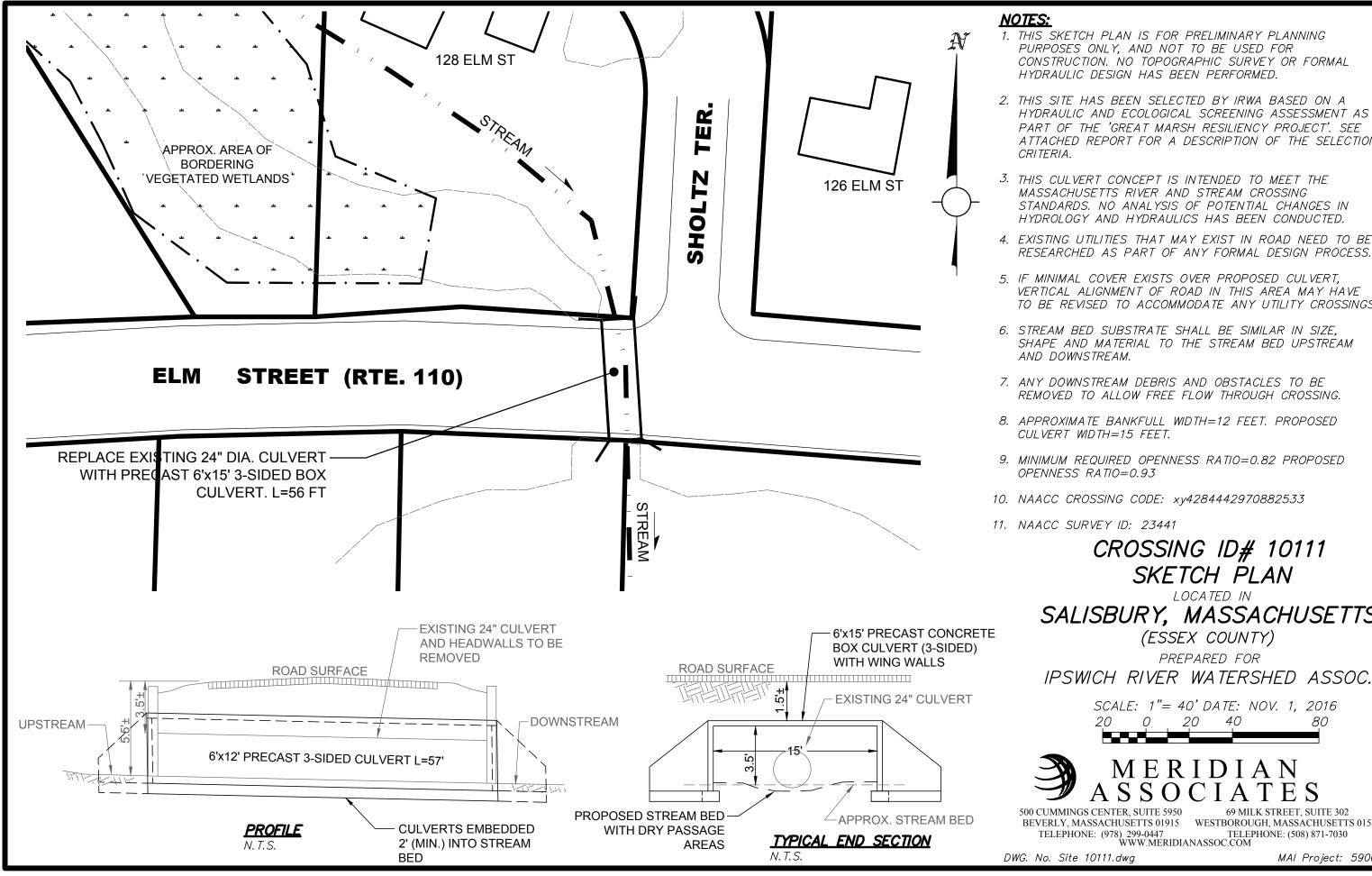


HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN HYDROLOGY AND HYDRAULICS HAS BEEN CONDUCTED.

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

SALISBURY, MASSACHUSETTS

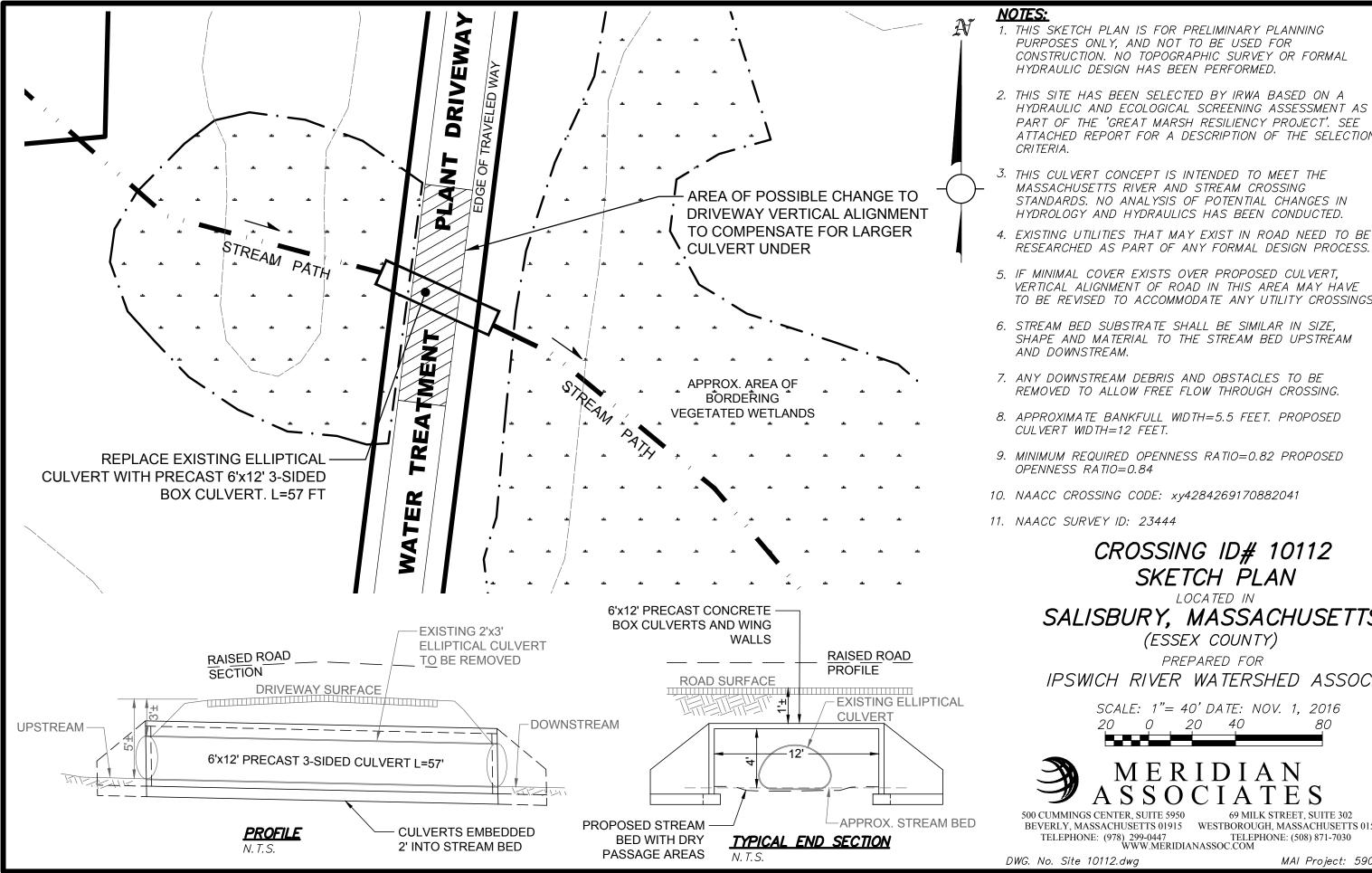
IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 60' DATE: NOV. 9, 2016 120

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.


VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

SALISBURY, MASSACHUSETTS

SCALE: 1"= 40' DATE: NOV. 1, 2016

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

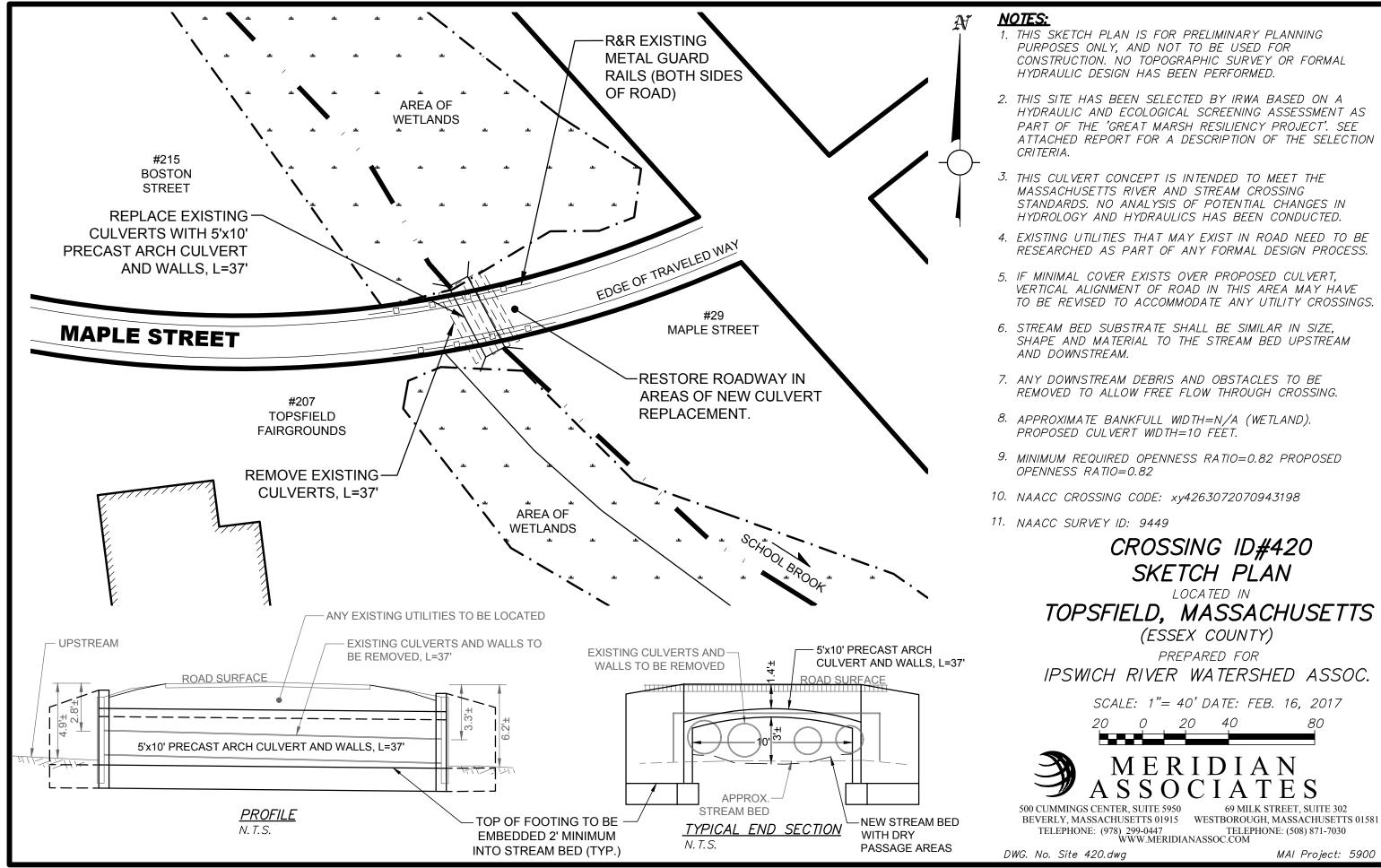


RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SALISBURY, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.


SCALE: 1"= 40' DATE: NOV. 1, 2016 80

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

# Topsfield Designs

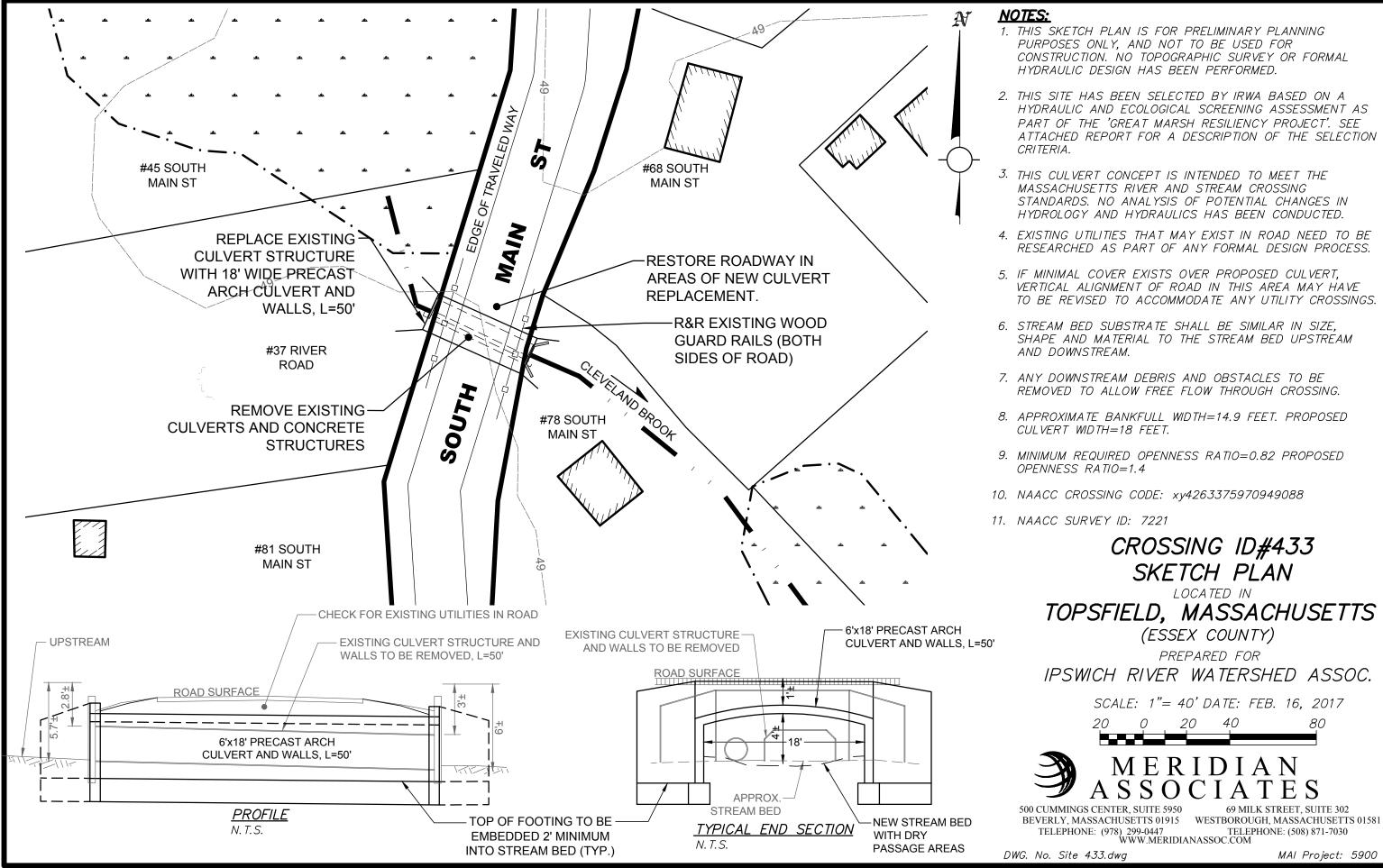
Conceptual designs for the replacement of select road-stream crossings in the Town of Topsfield, MA

14 pages



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.


TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

TOPSFIELD, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

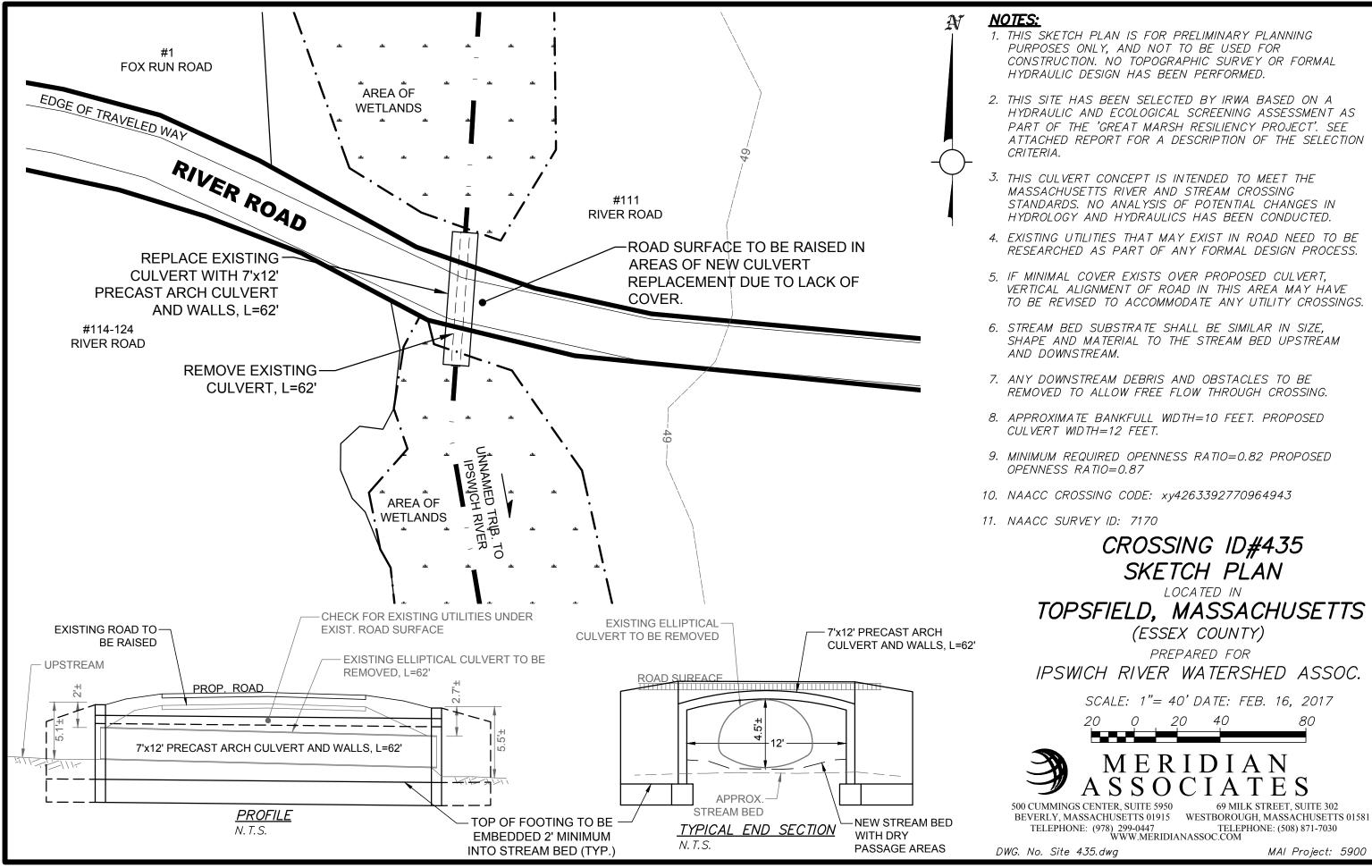
SCALE: 1"= 40' DATE: FEB. 16, 2017

TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.


TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

TOPSFIELD, MASSACHUSETTS

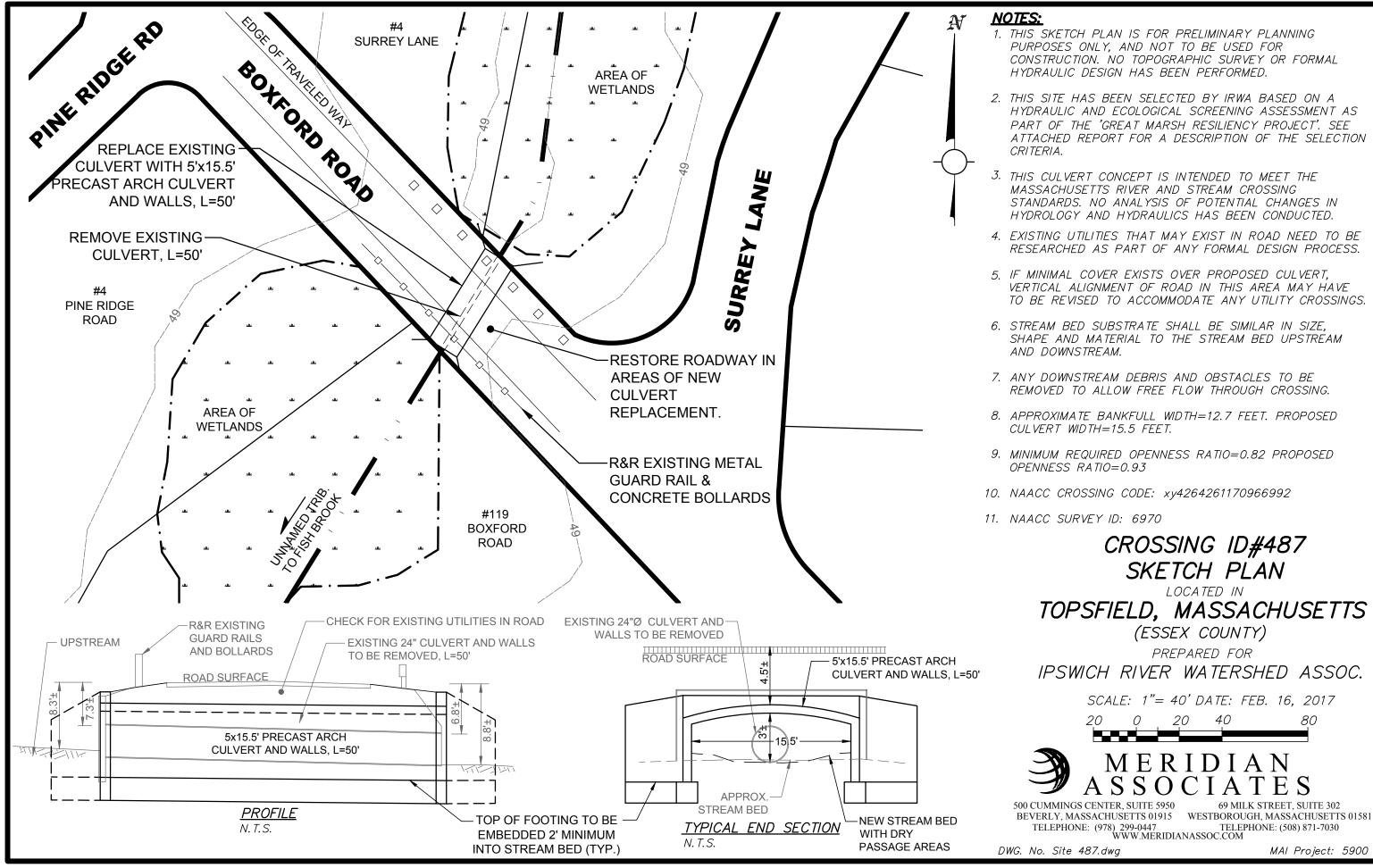
IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 16, 2017

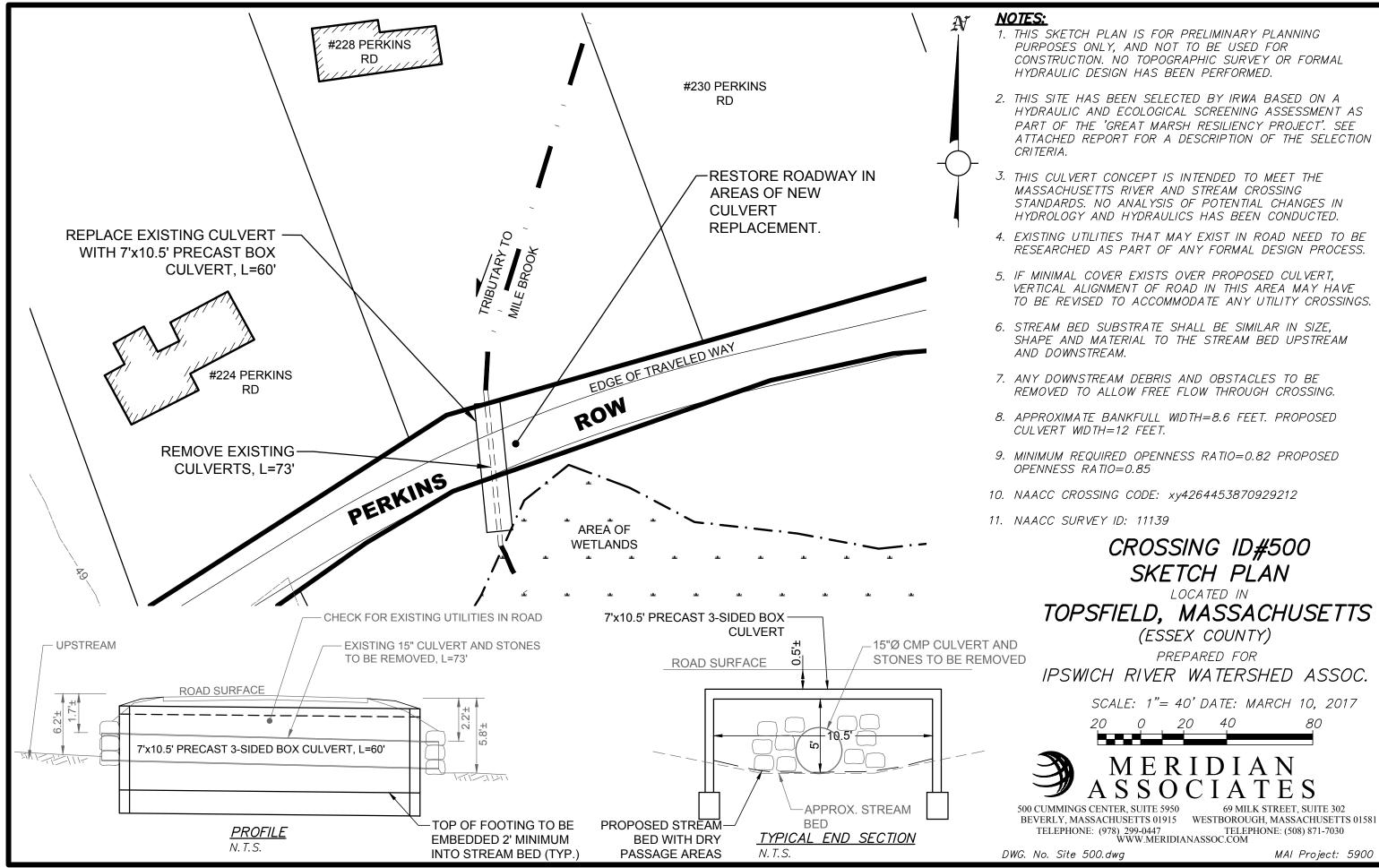
TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



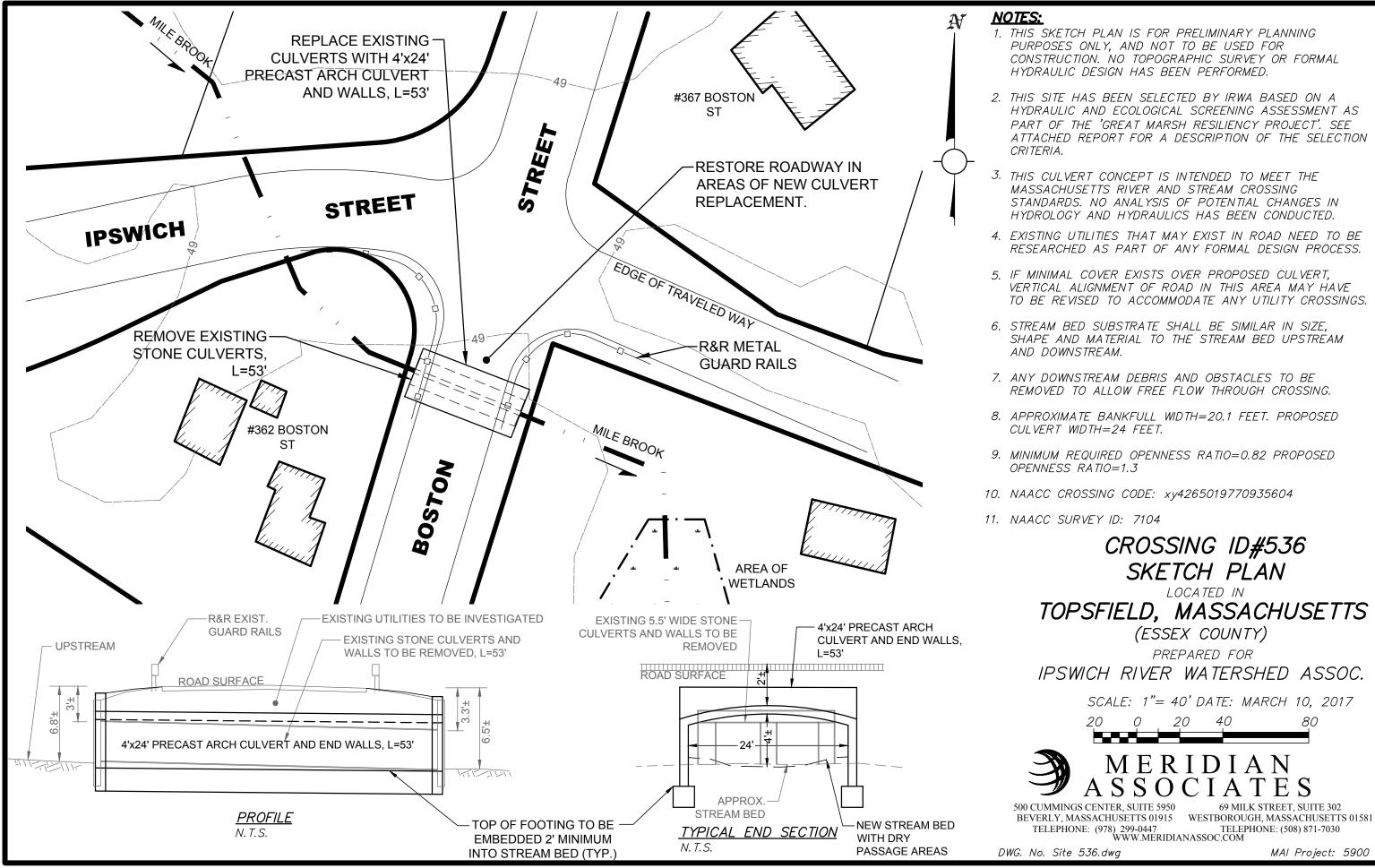
RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.


VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

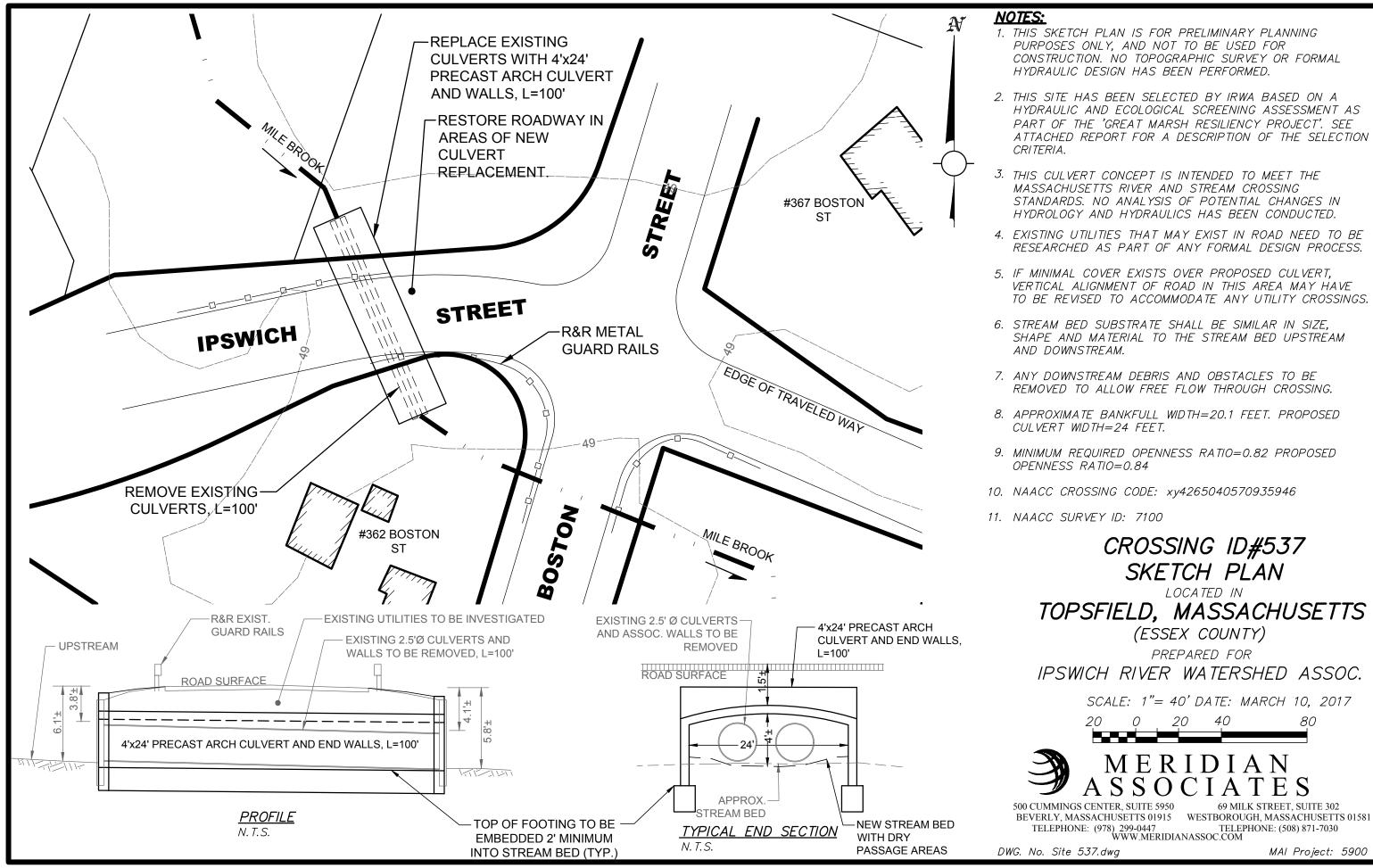
TOPSFIELD, MASSACHUSETTS


IPSWICH RIVER WATERSHED ASSOC.

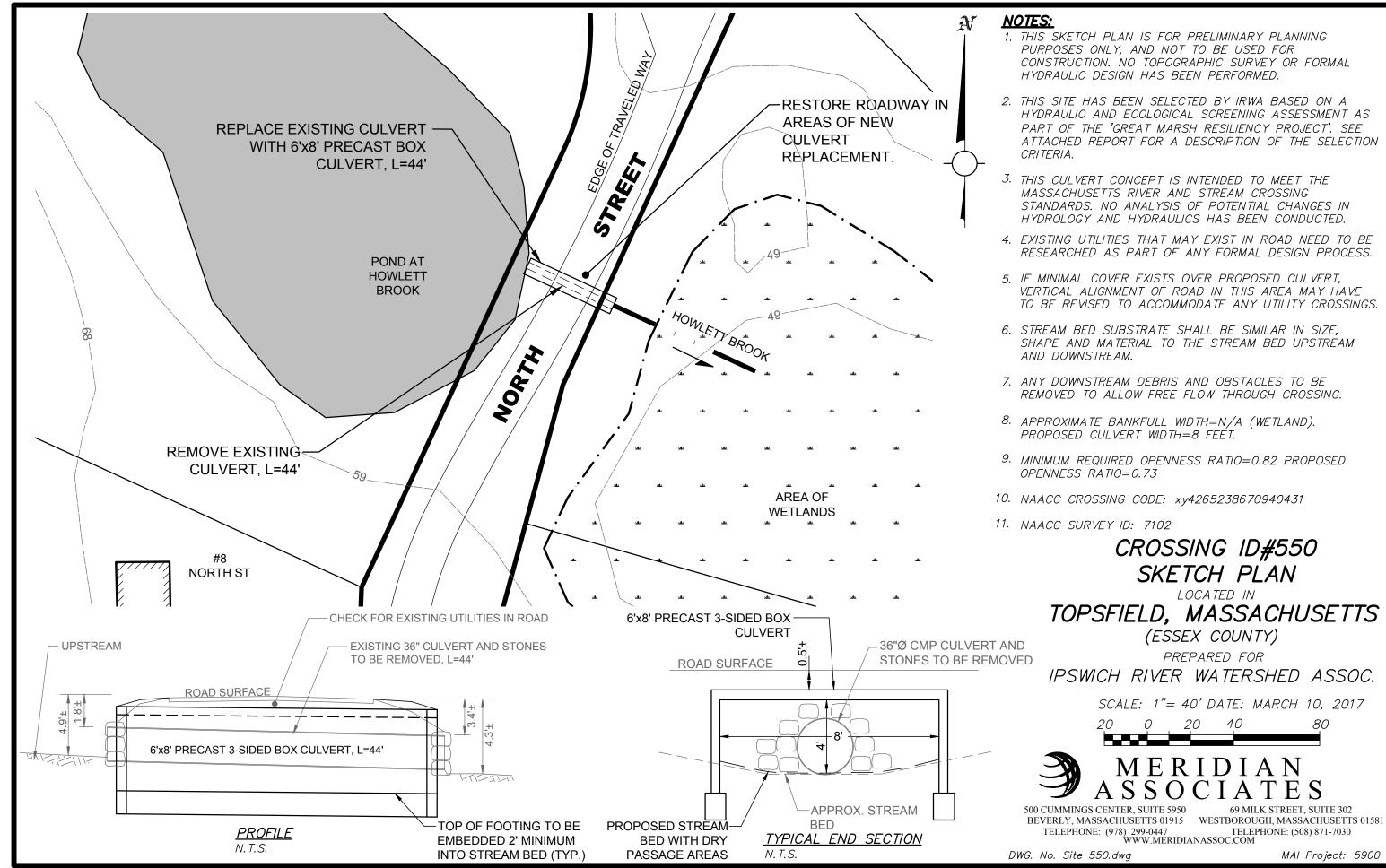
SCALE: 1"= 40' DATE: FEB. 16, 2017


TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

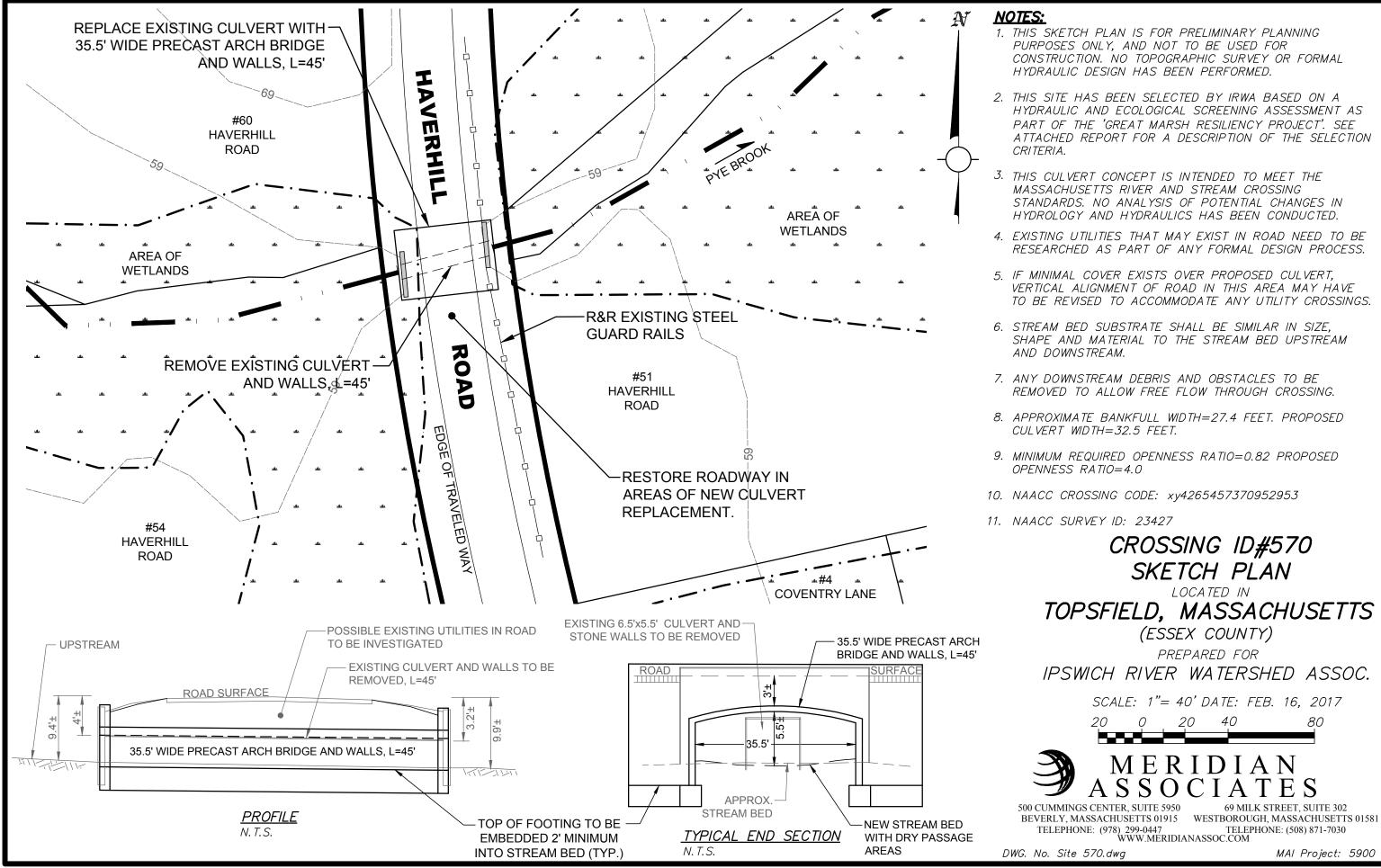



IPSWICH RIVER WATERSHED ASSOC.





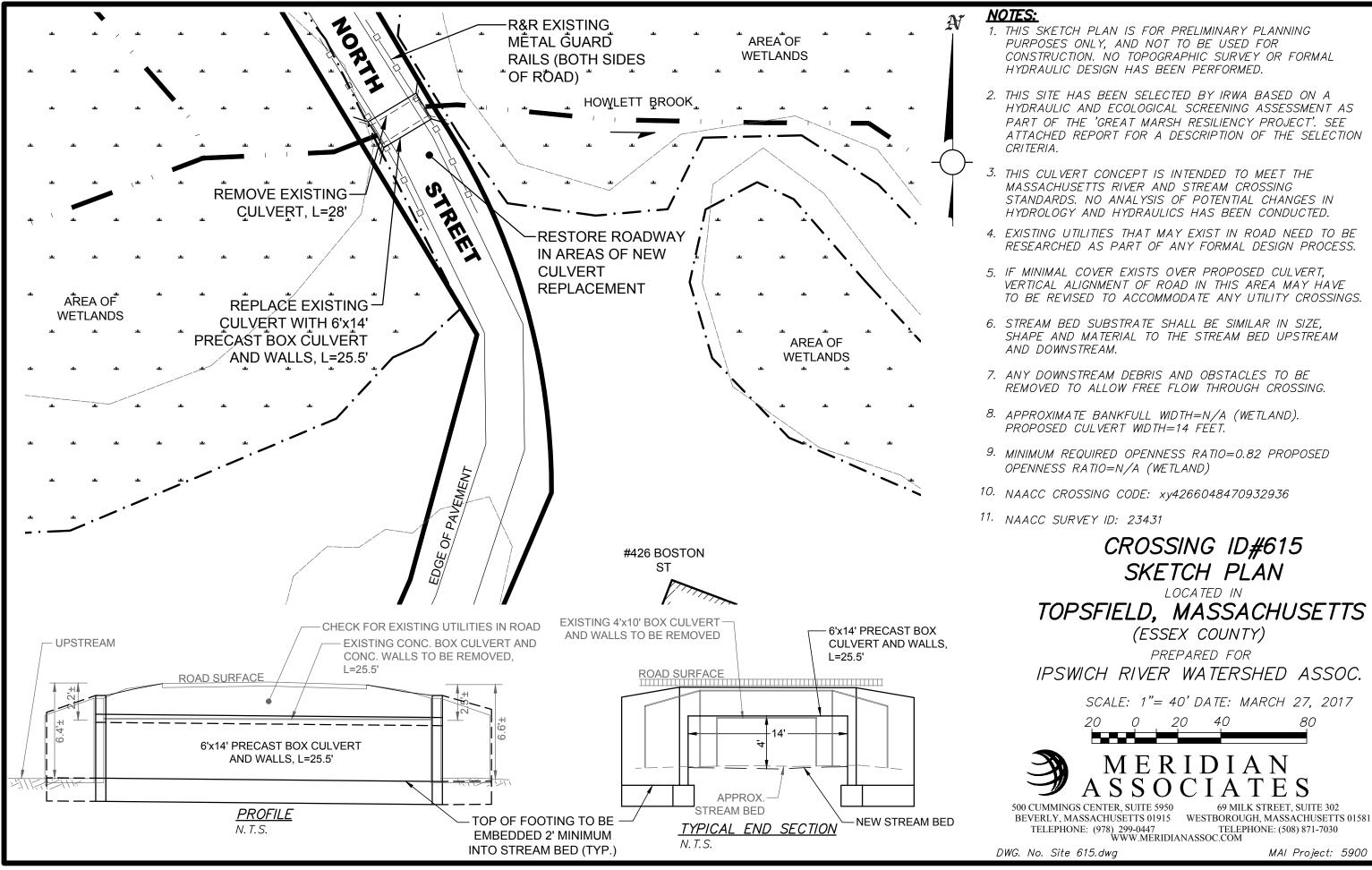




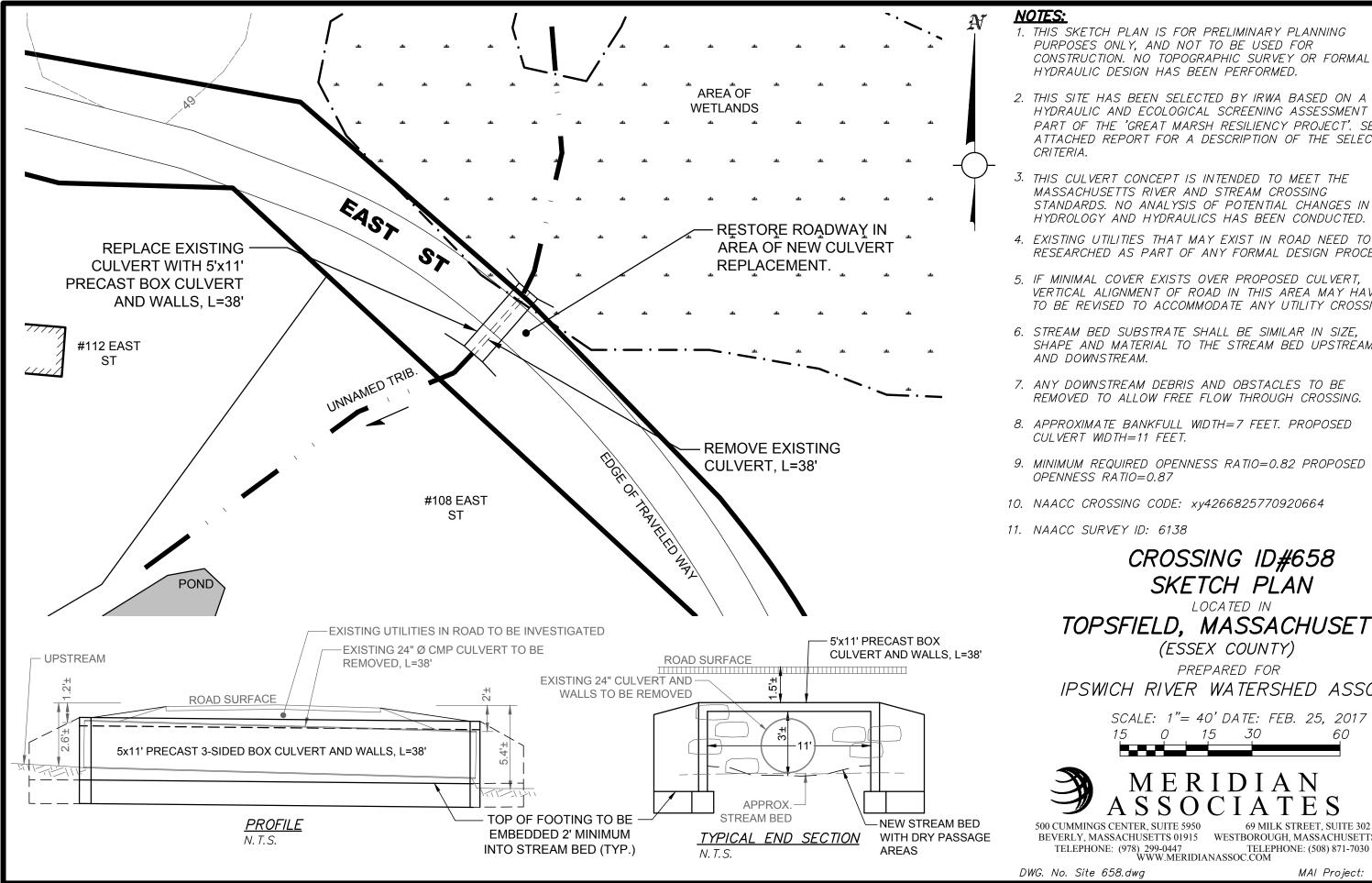






SCALE: 1"= 40' DATE: MARCH 10, 2017



IPSWICH RIVER WATERSHED ASSOC.








TOPSFIELD, MASSACHUSETTS

SCALE: 1"= 40' DATE: MARCH 27, 2017

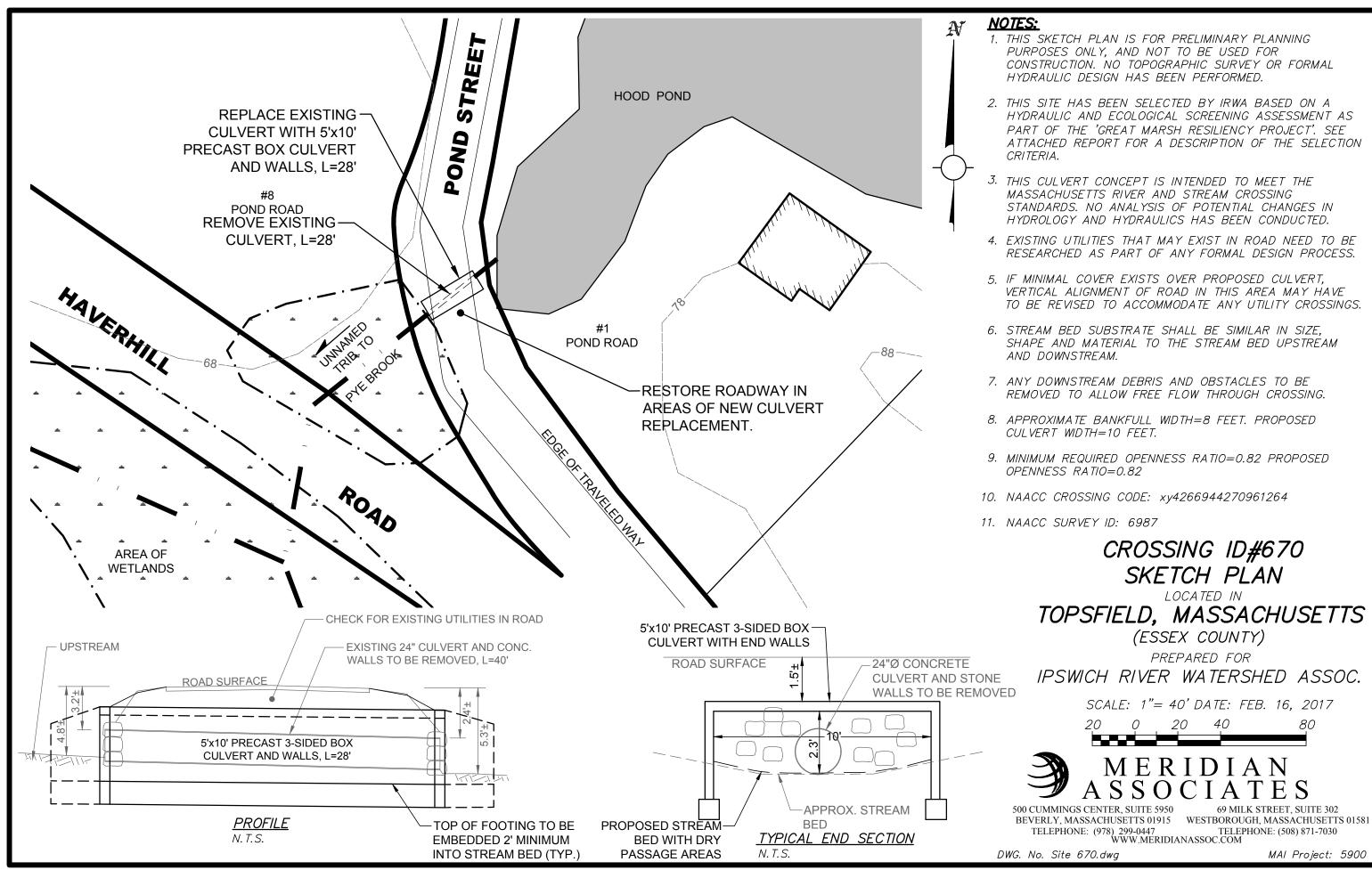


CONSTRUCTION. NO TOPOGRAPHIC SURVEY OR FORMAL

HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

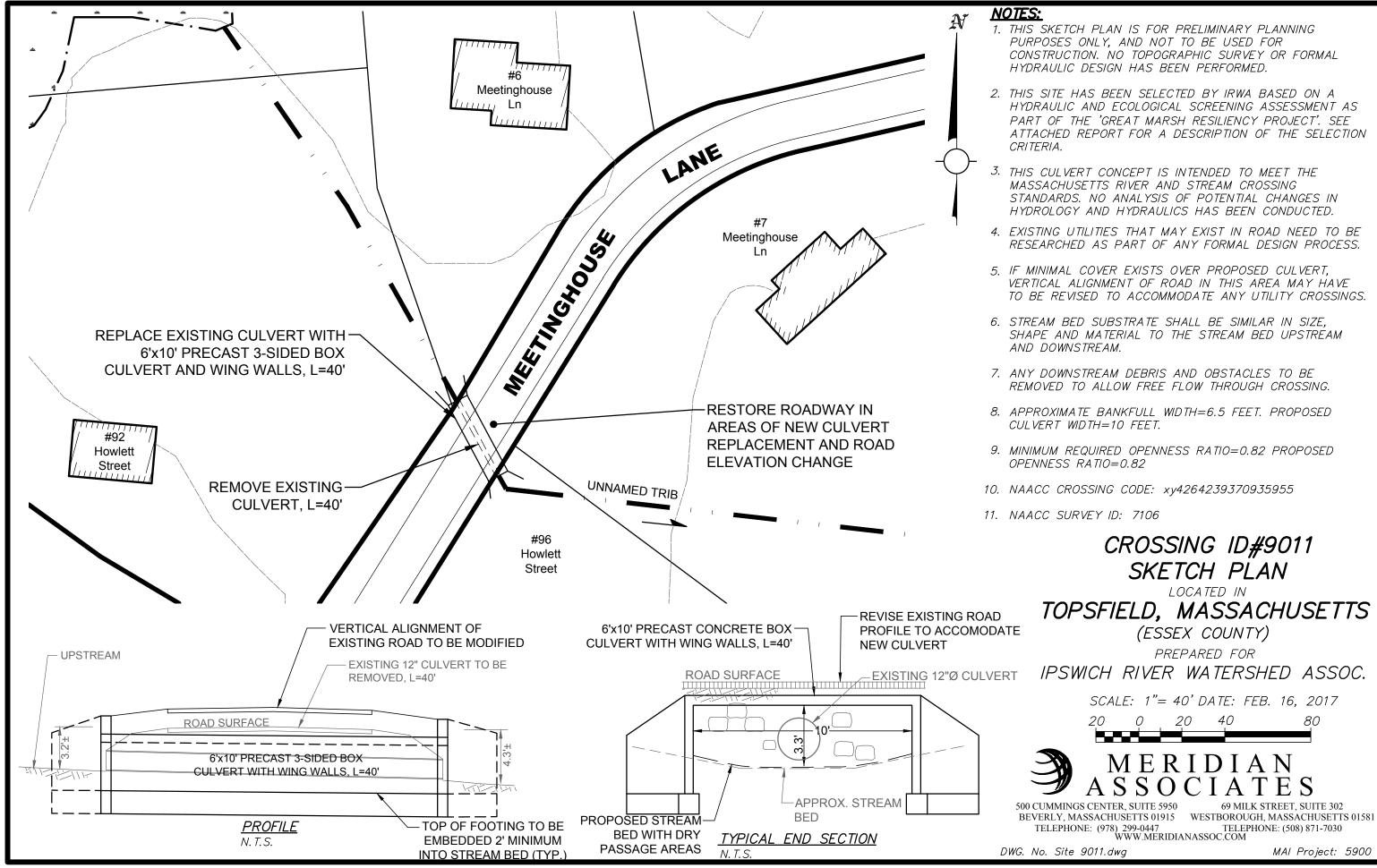
4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.


SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

TOPSFIELD, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.


SCALE: 1"= 40' DATE: FEB. 25, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



TOPSFIELD, MASSACHUSETTS

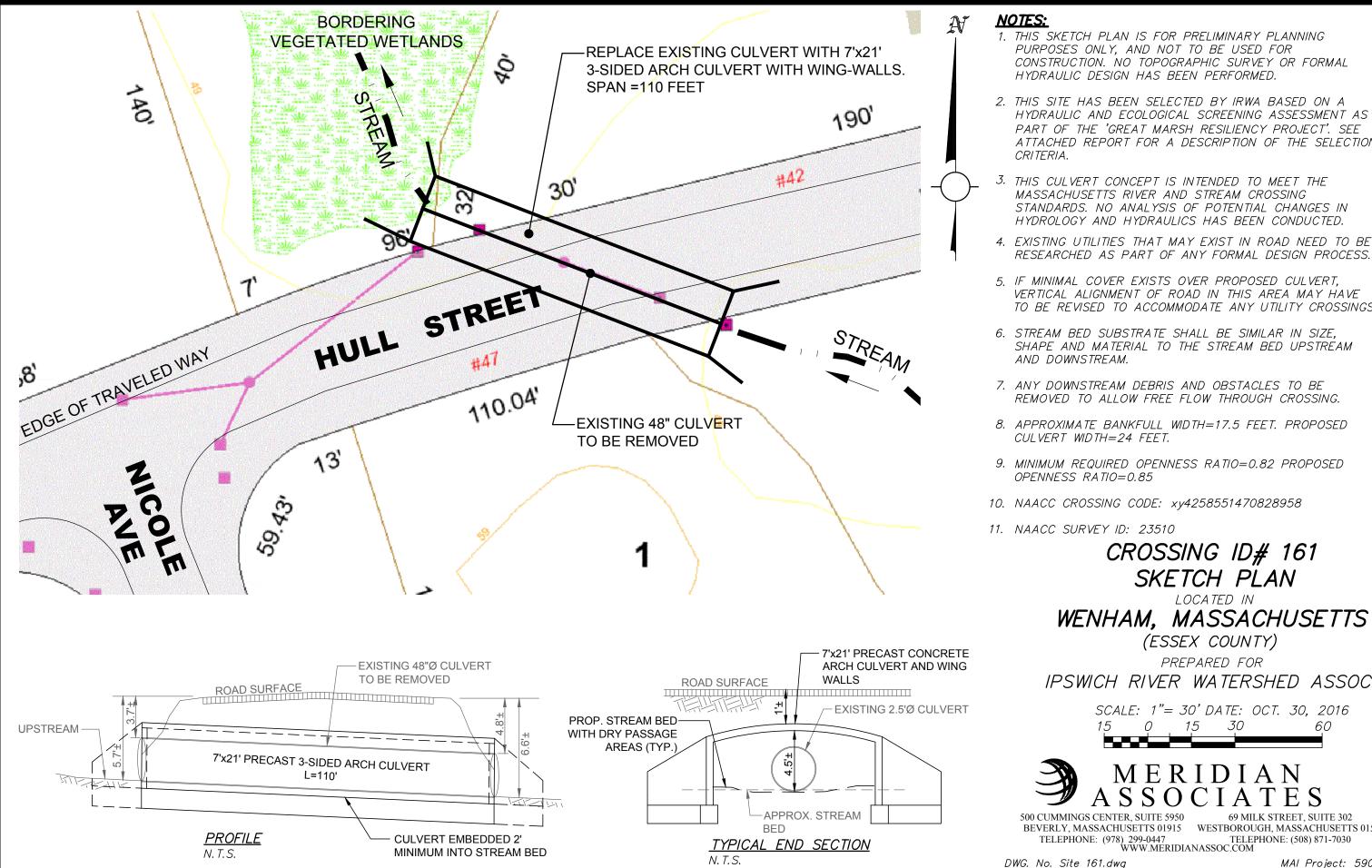
IPSWICH RIVER WATERSHED ASSOC.



TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

TOPSFIELD, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.


SCALE: 1"= 40' DATE: FEB. 16, 2017

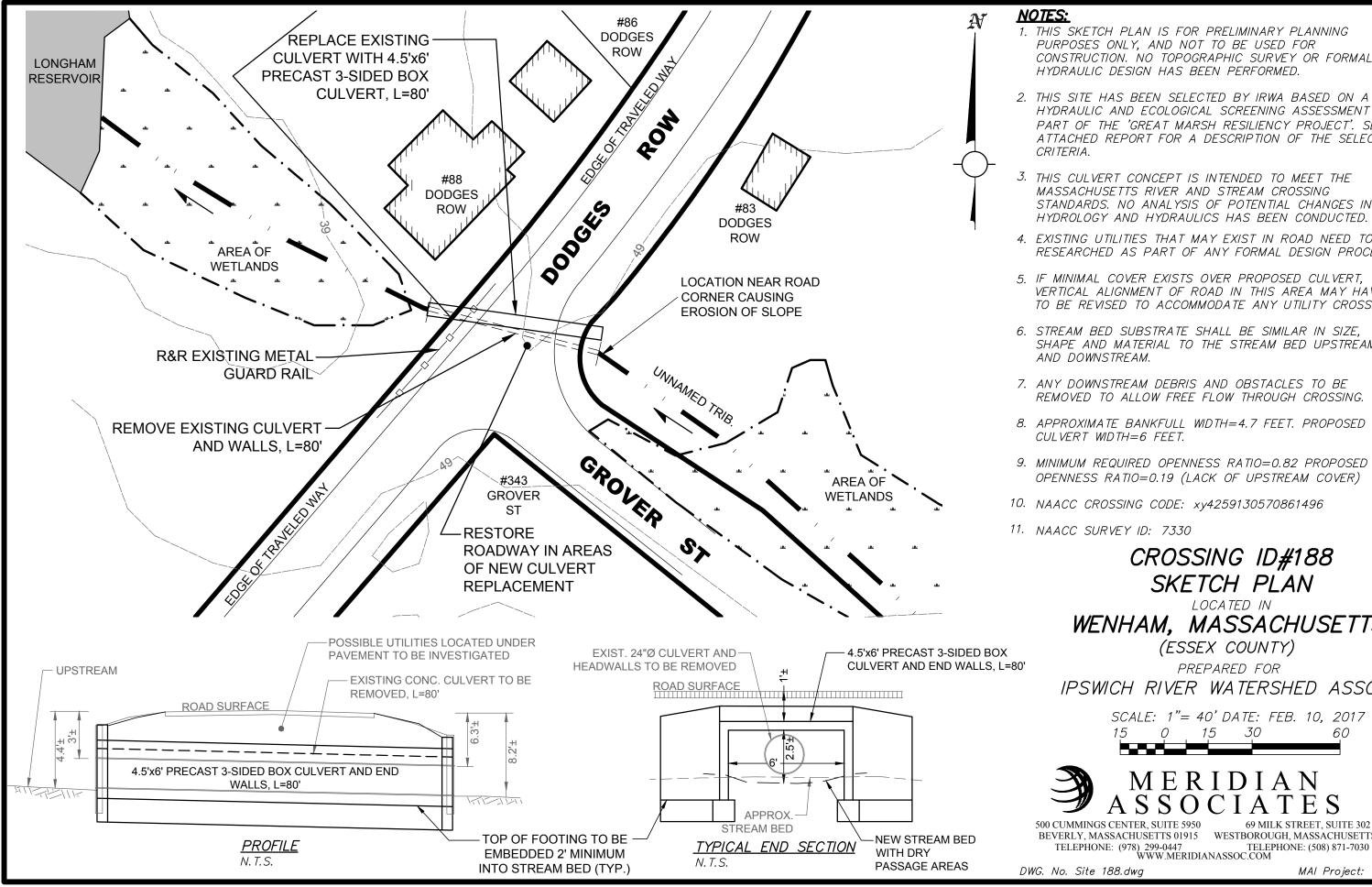
TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

## Wenham Designs

Conceptual designs for the replacement of select road-stream crossings in the Town of Wenham, MA

3 pages




RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 30' DATE: OCT. 30, 2016 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



CONSTRUCTION. NO TOPOGRAPHIC SURVEY OR FORMAL

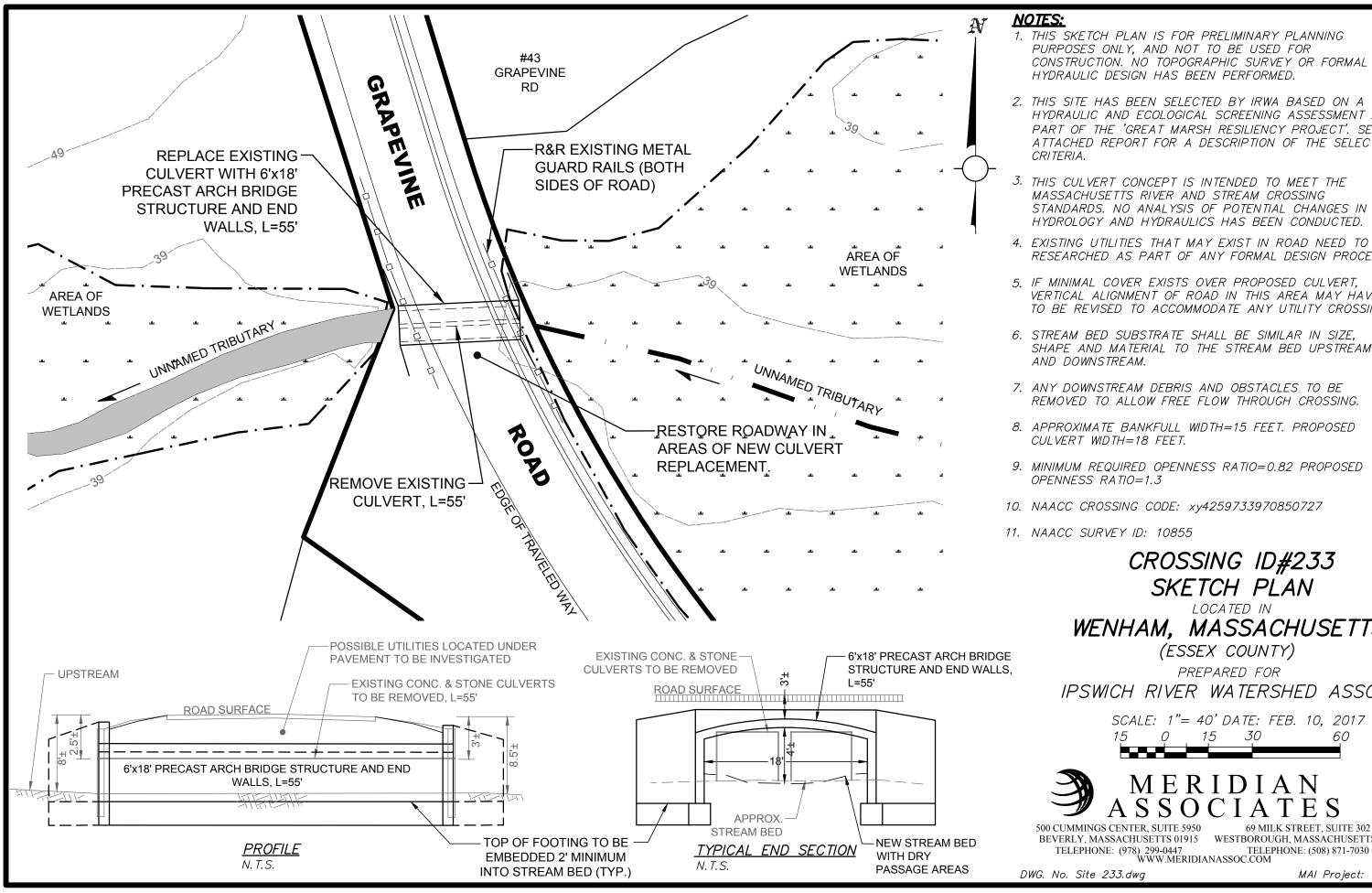
HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN HYDROLOGY AND HYDRAULICS HAS BEEN CONDUCTED.

4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM


REMOVED TO ALLOW FREE FLOW THROUGH CROSSING.

WENHAM, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: FEB. 10, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



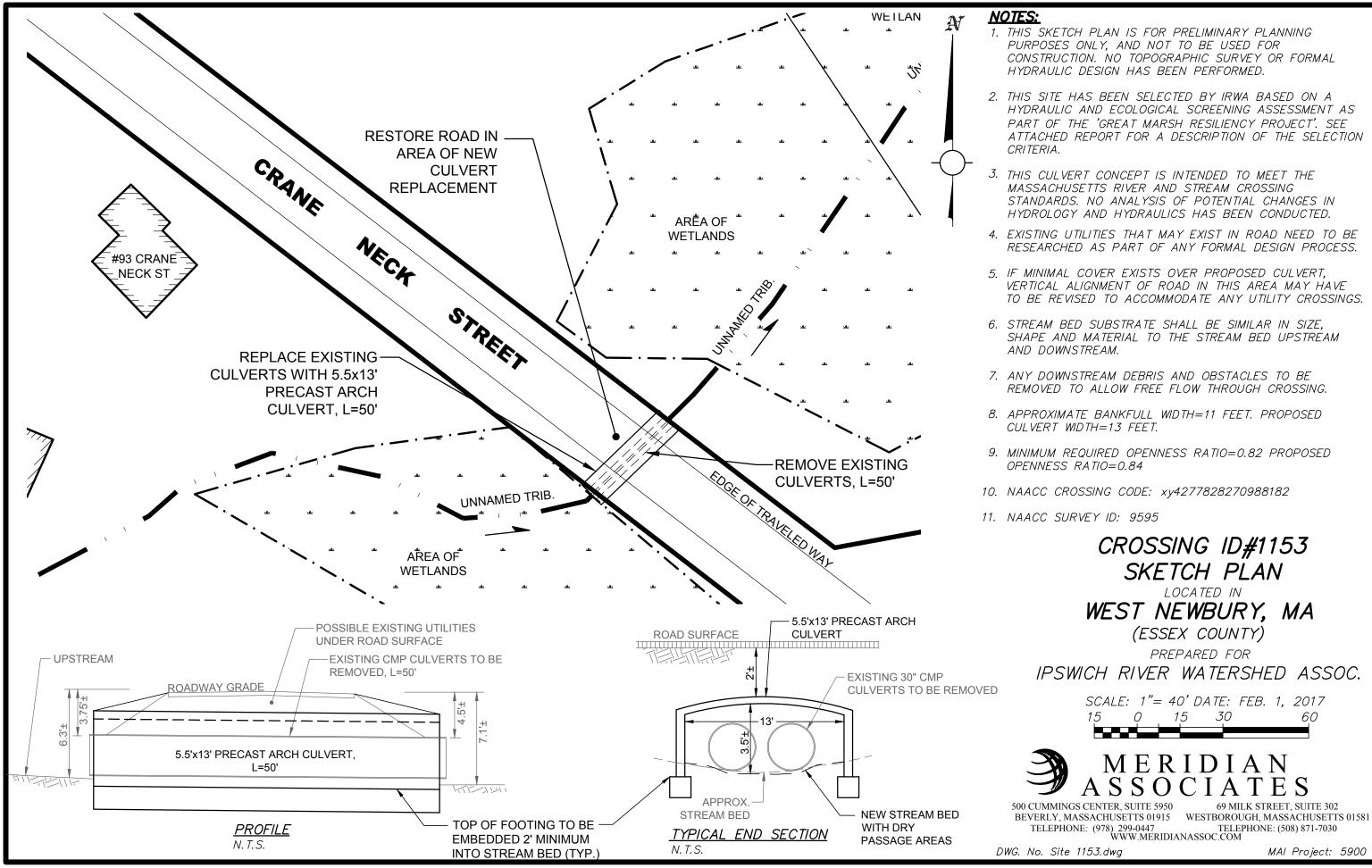
4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

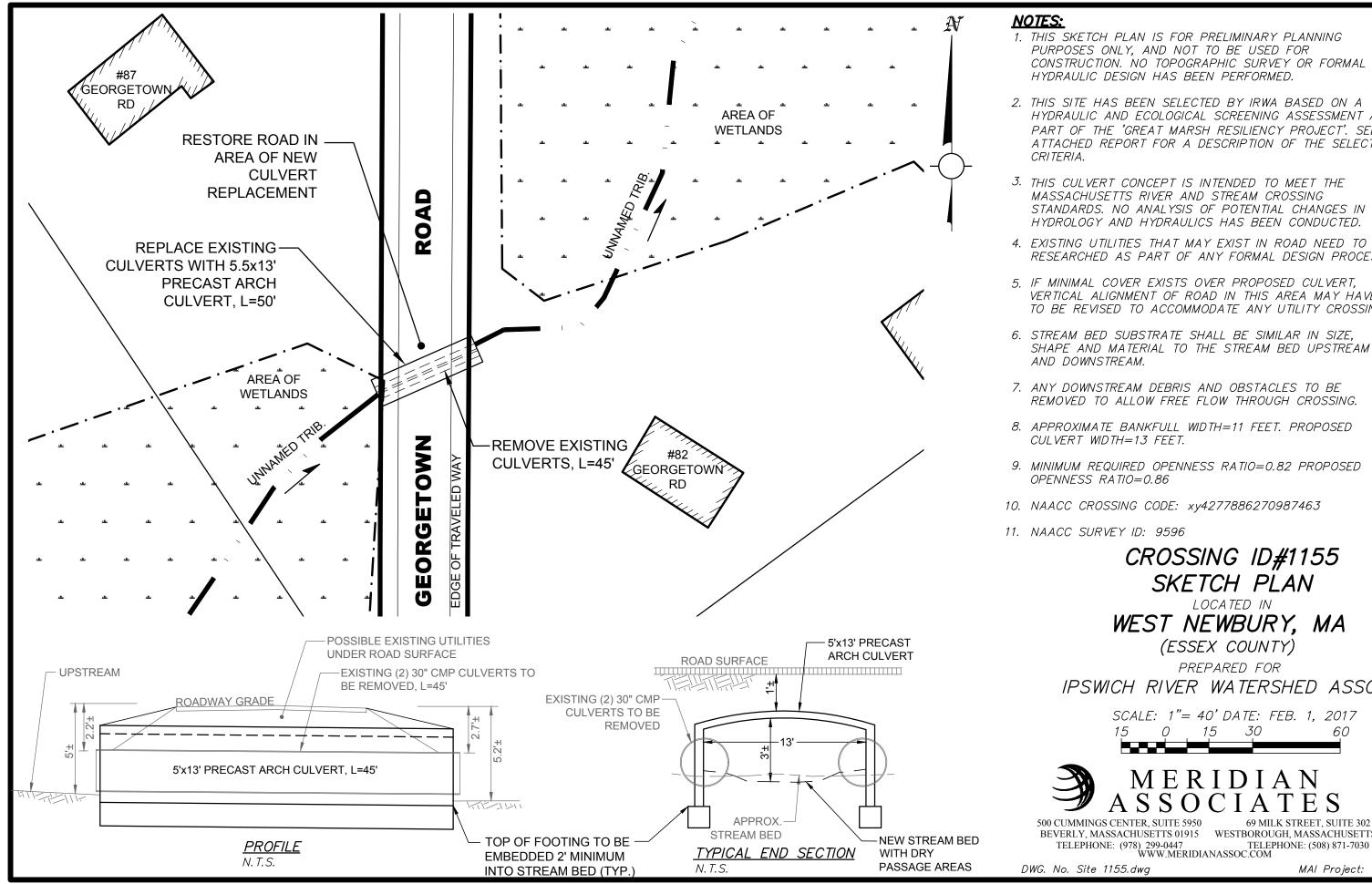
VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

WENHAM, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.


SCALE: 1"= 40' DATE: FEB. 10, 2017 60


BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

West Newbury Designs

Conceptual designs for the replacement of select road-stream crossings in the Town of West Newbury, MA

2 pages





CONSTRUCTION. NO TOPOGRAPHIC SURVEY OR FORMAL

HYDRAULIC AND ECOLOGICAL SCREENING ASSESSMENT AS PART OF THE 'GREAT MARSH RESILIENCY PROJECT'. SEE ATTACHED REPORT FOR A DESCRIPTION OF THE SELECTION

STANDARDS. NO ANALYSIS OF POTENTIAL CHANGES IN

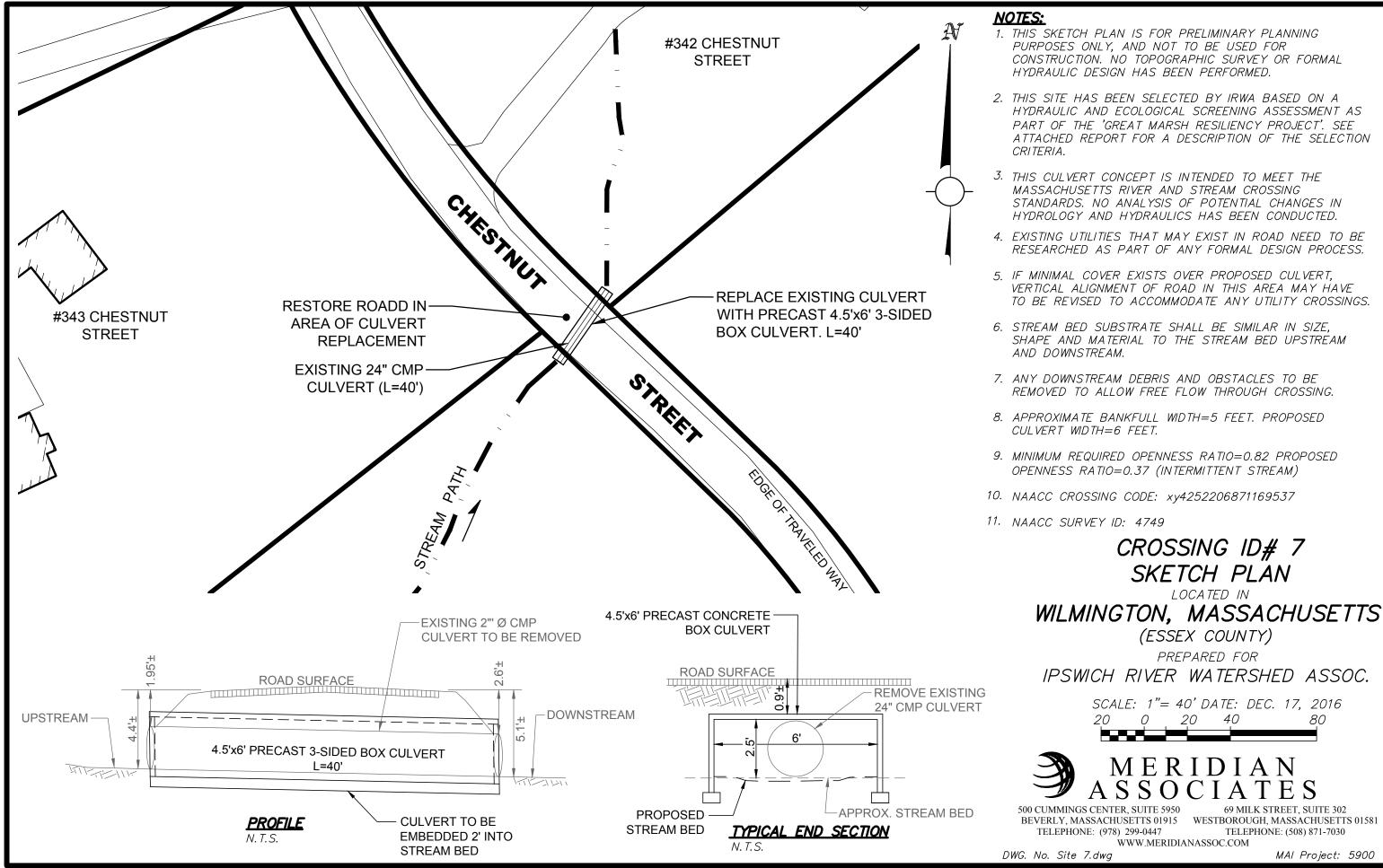
4. EXISTING UTILITIES THAT MAY EXIST IN ROAD NEED TO BE RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

SHAPE AND MATERIAL TO THE STREAM BED UPSTREAM

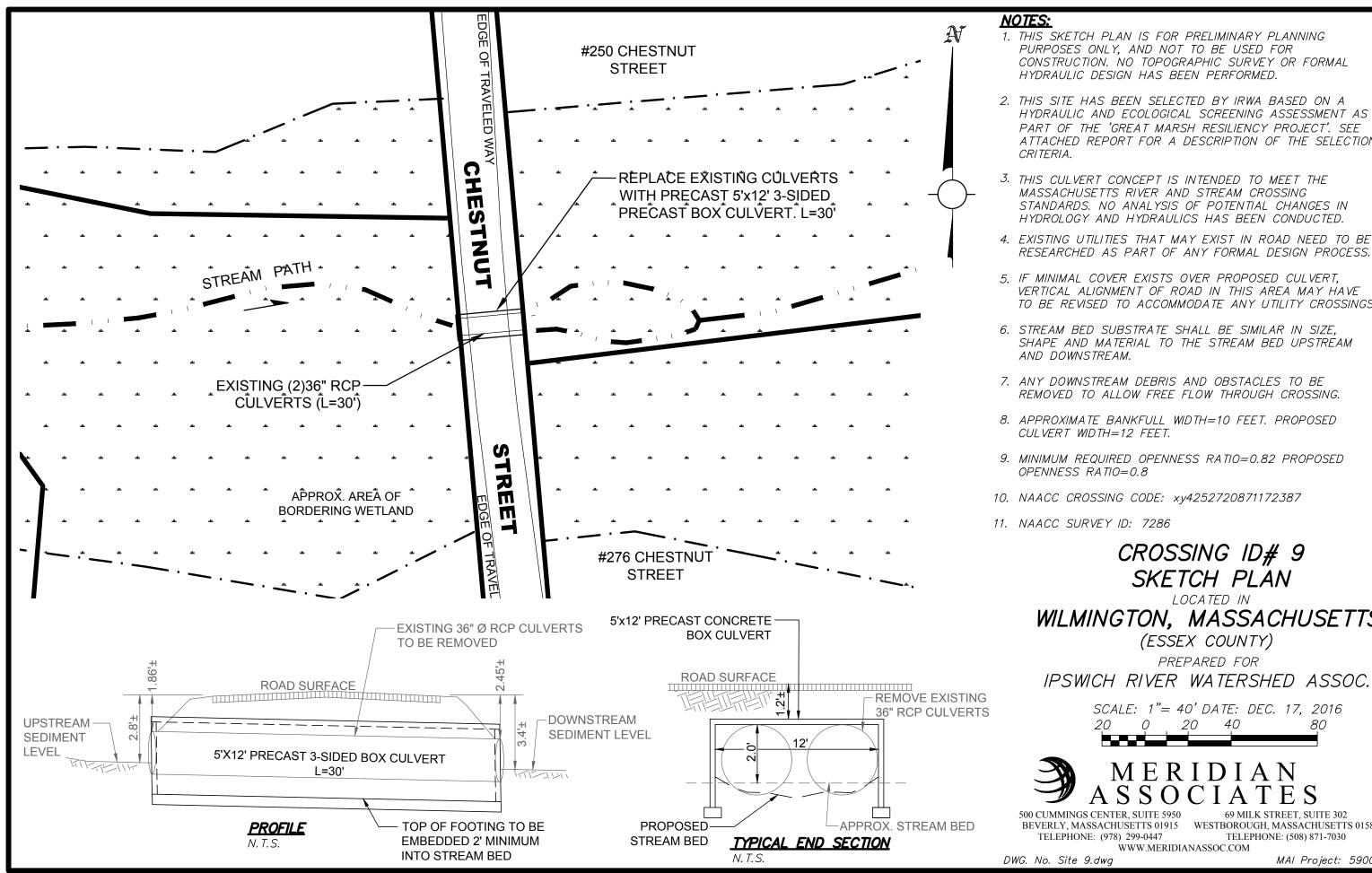
# CROSSING ID#1155 WEST NEWBURY, MA

IPSWICH RIVER WATERSHED ASSOC.


SCALE: 1"= 40' DATE: FEB. 1, 2017 60

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

Wilmington Designs


Conceptual designs for the replacement of select road-stream crossings in the Town of Wilmington, MA

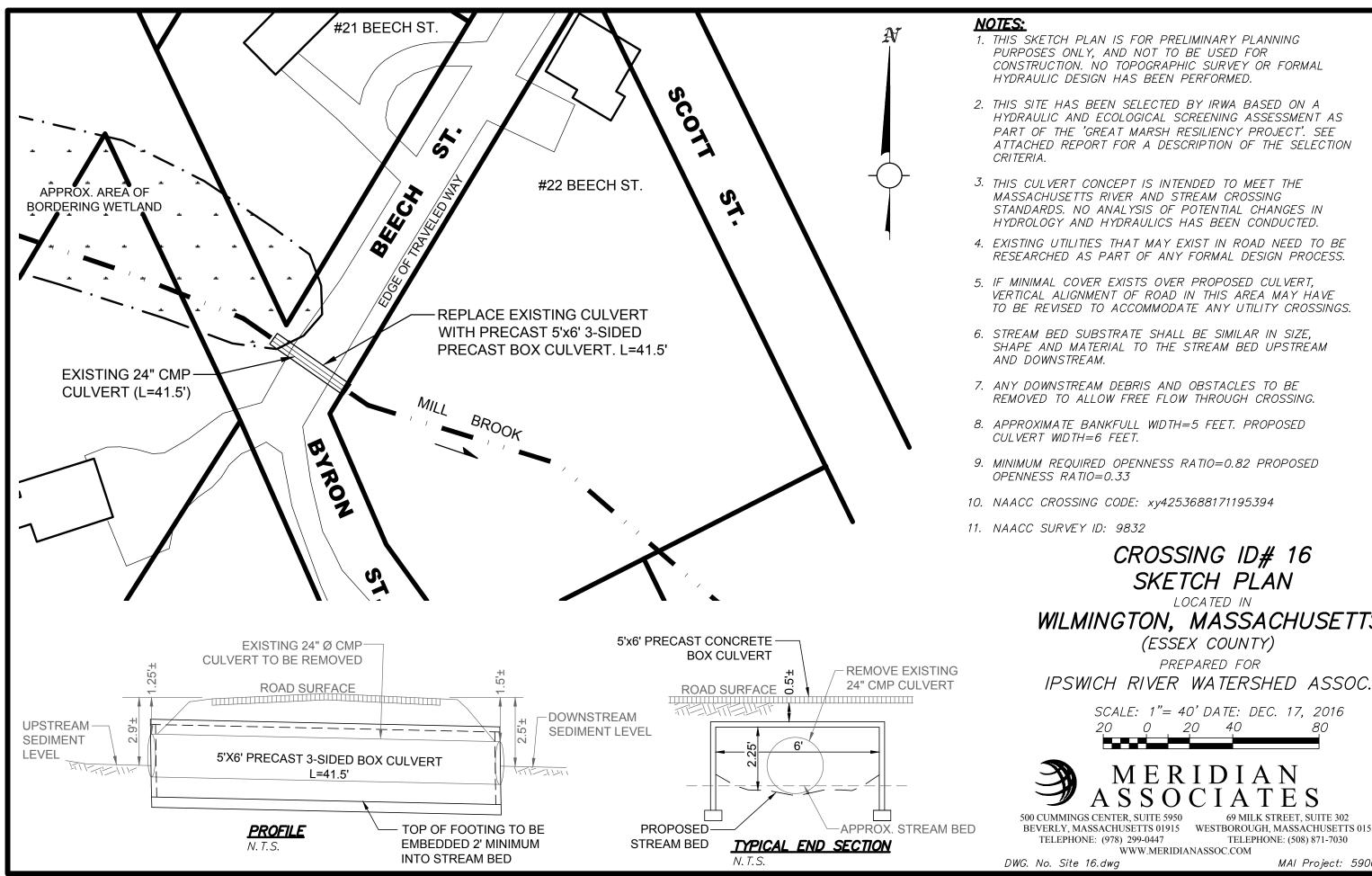
11 pages



SCALE: 1"= 40' DATE: DEC. 17, 2016

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030

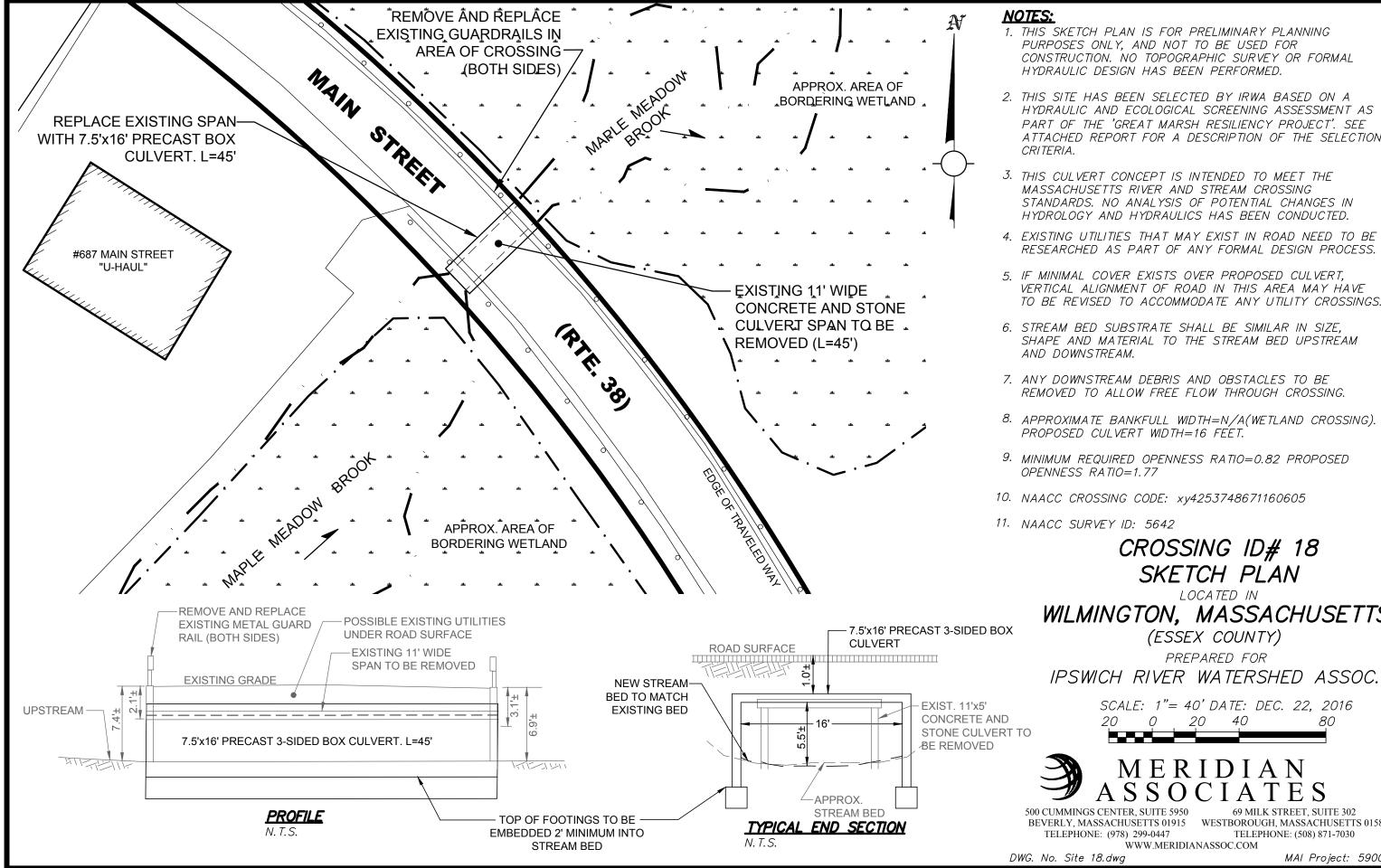



RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

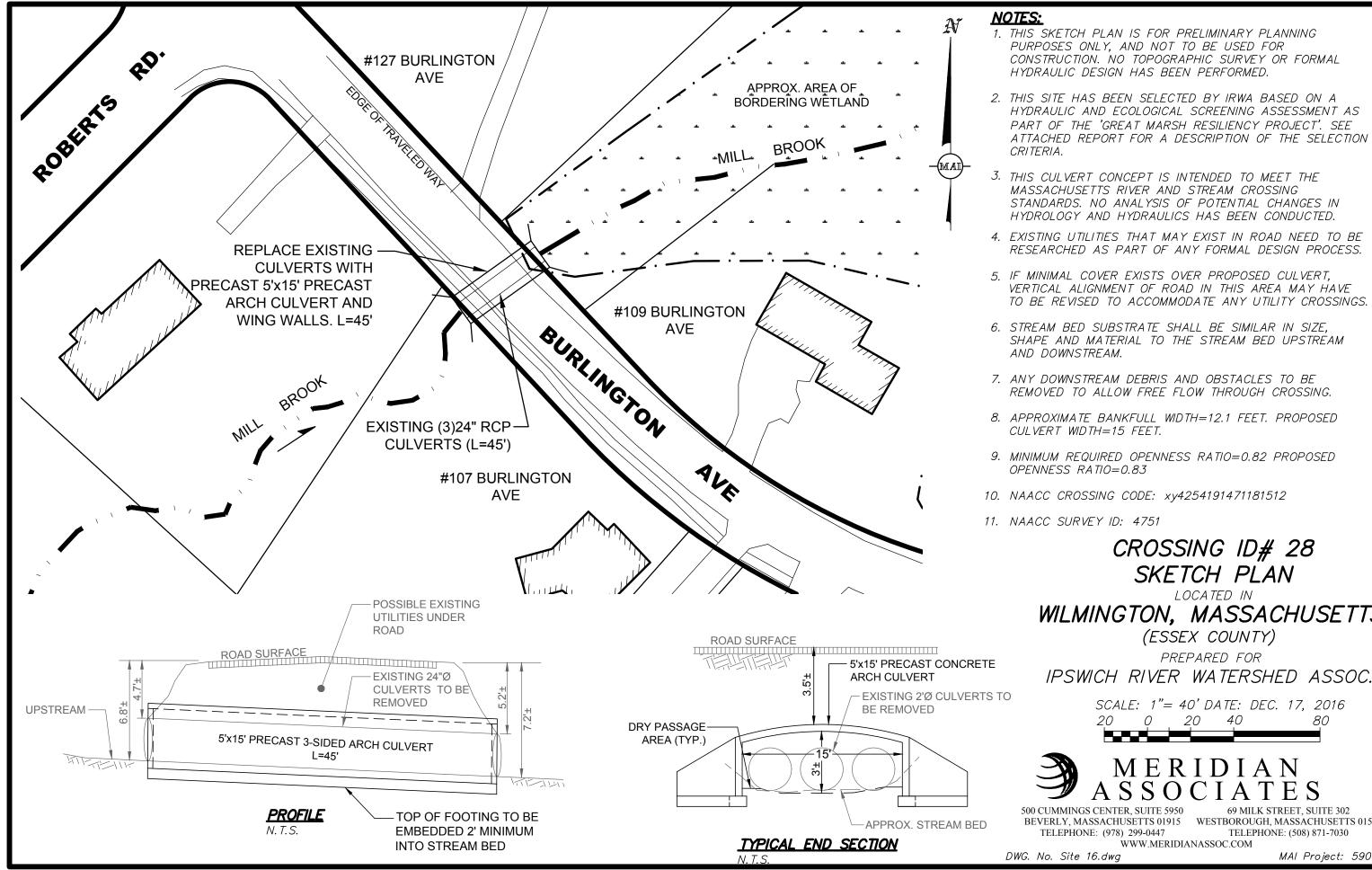
WILMINGTON, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.


BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030

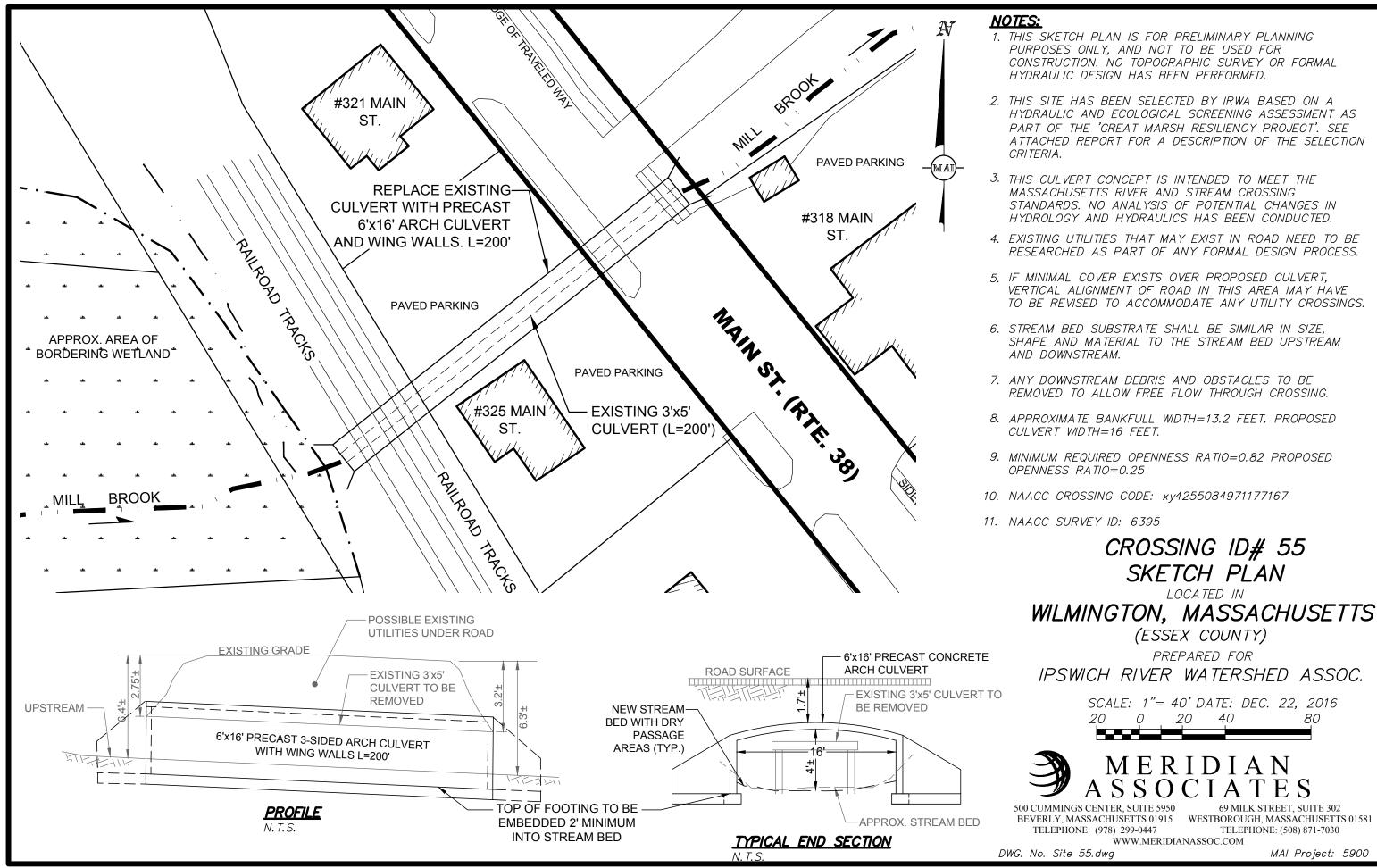


WILMINGTON, MASSACHUSETTS

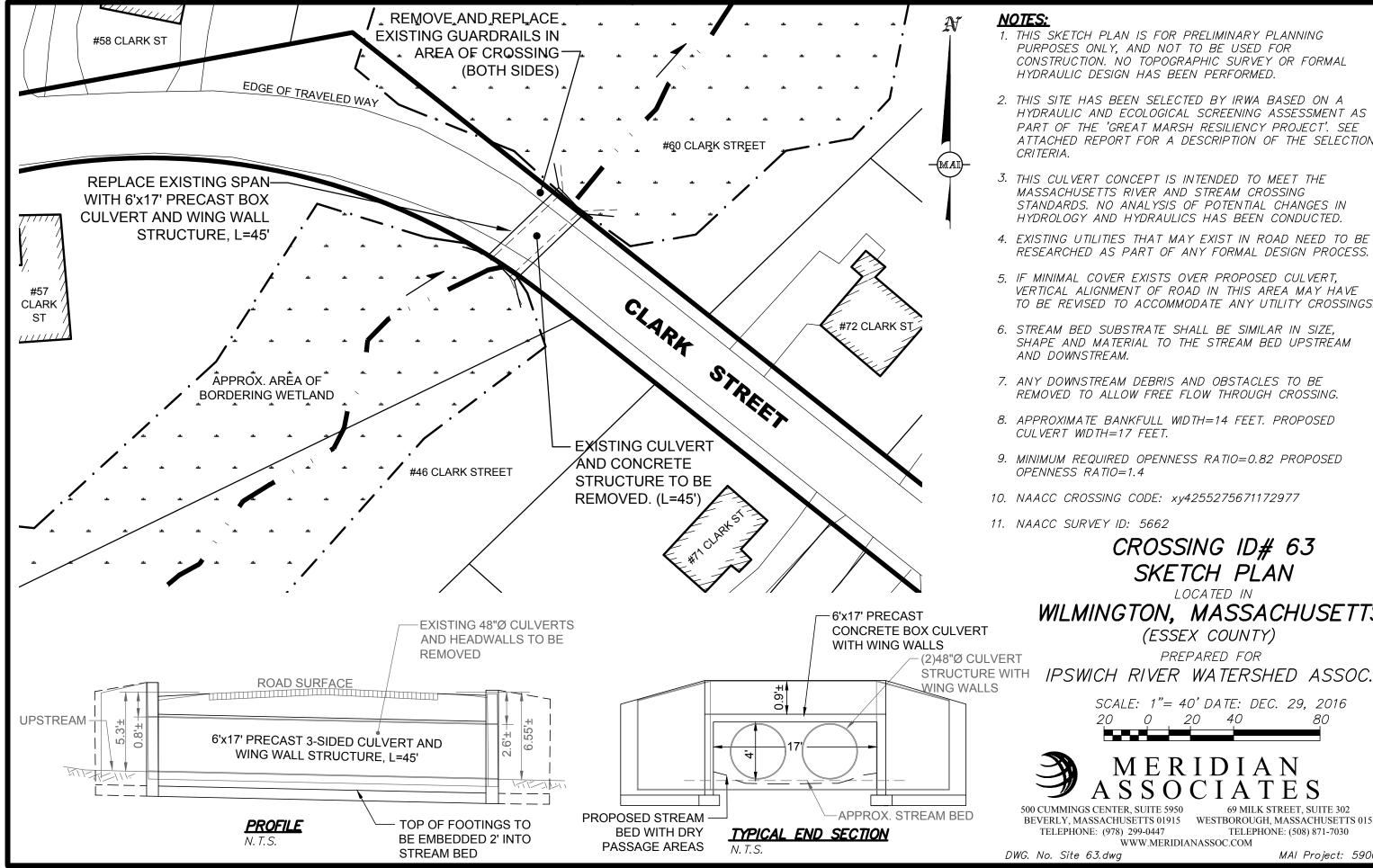

SCALE: 1"= 40' DATE: DEC. 17, 2016

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030




WILMINGTON, MASSACHUSETTS

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030

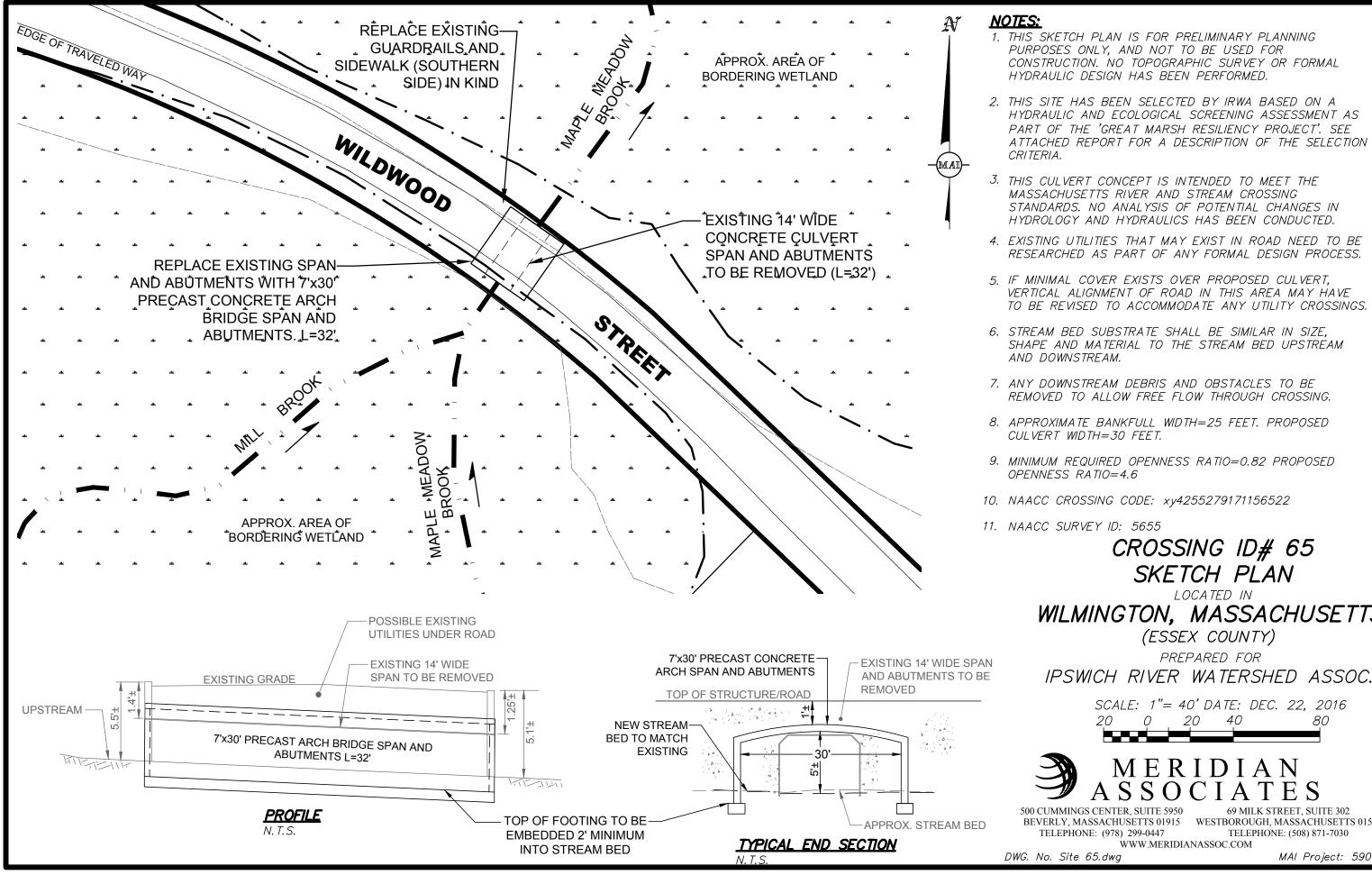



WILMINGTON, MASSACHUSETTS

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030

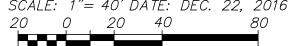


BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581

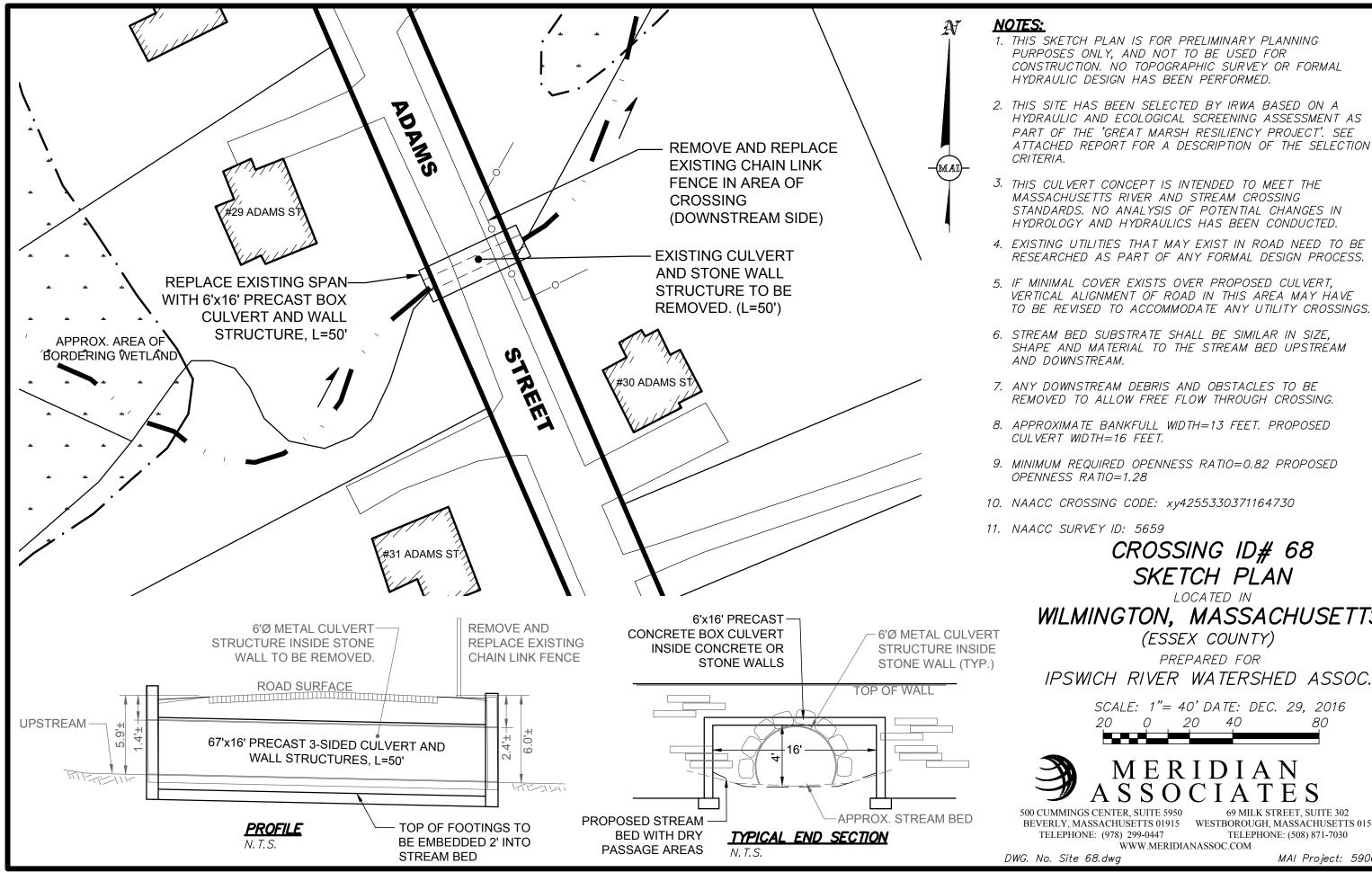



TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

WILMINGTON, MASSACHUSETTS


SCALE: 1"= 40' DATE: DEC. 29, 2016

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030

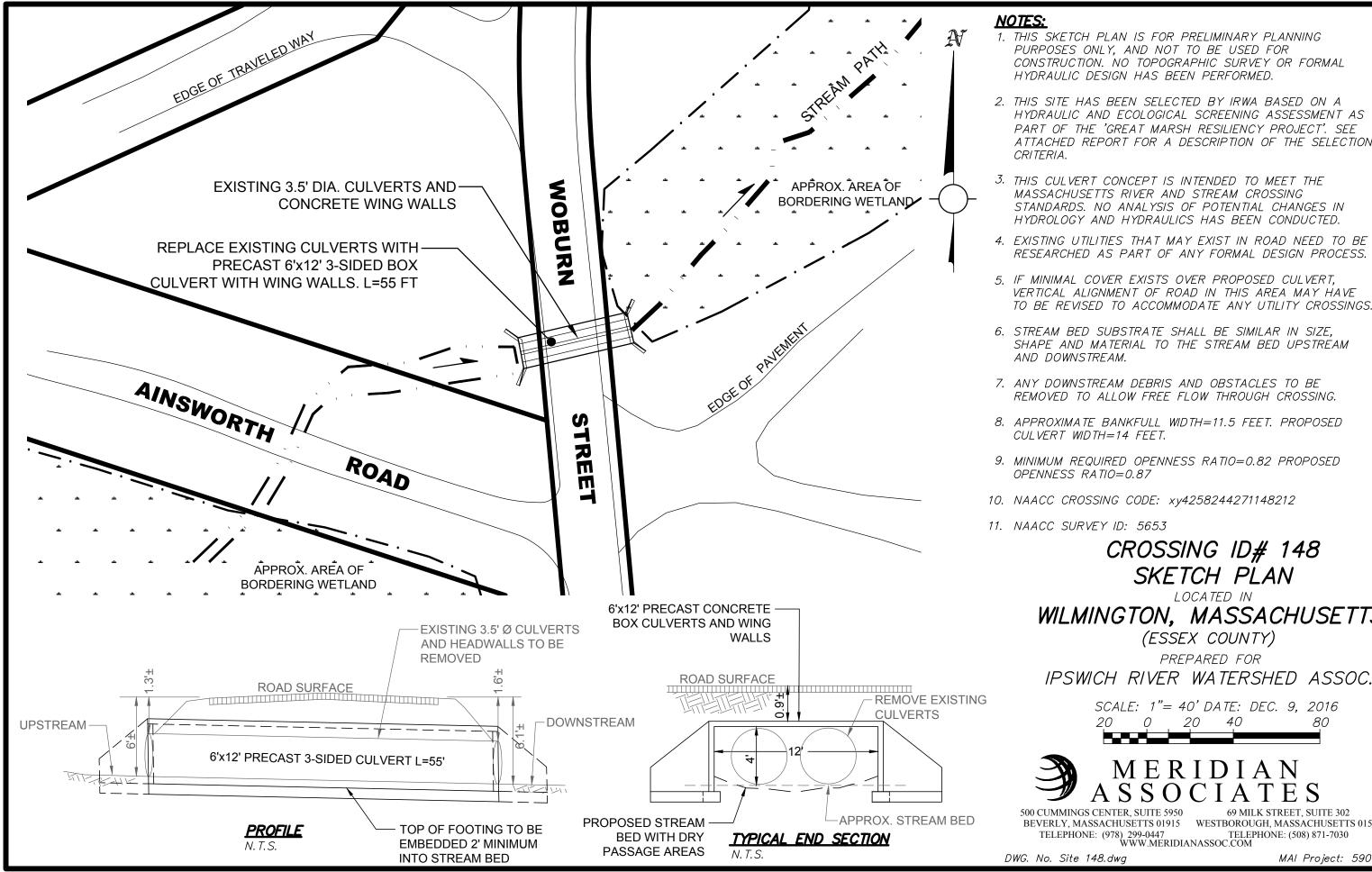



WILMINGTON, MASSACHUSETTS

SCALE: 1"= 40' DATE: DEC. 22, 2016



BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030



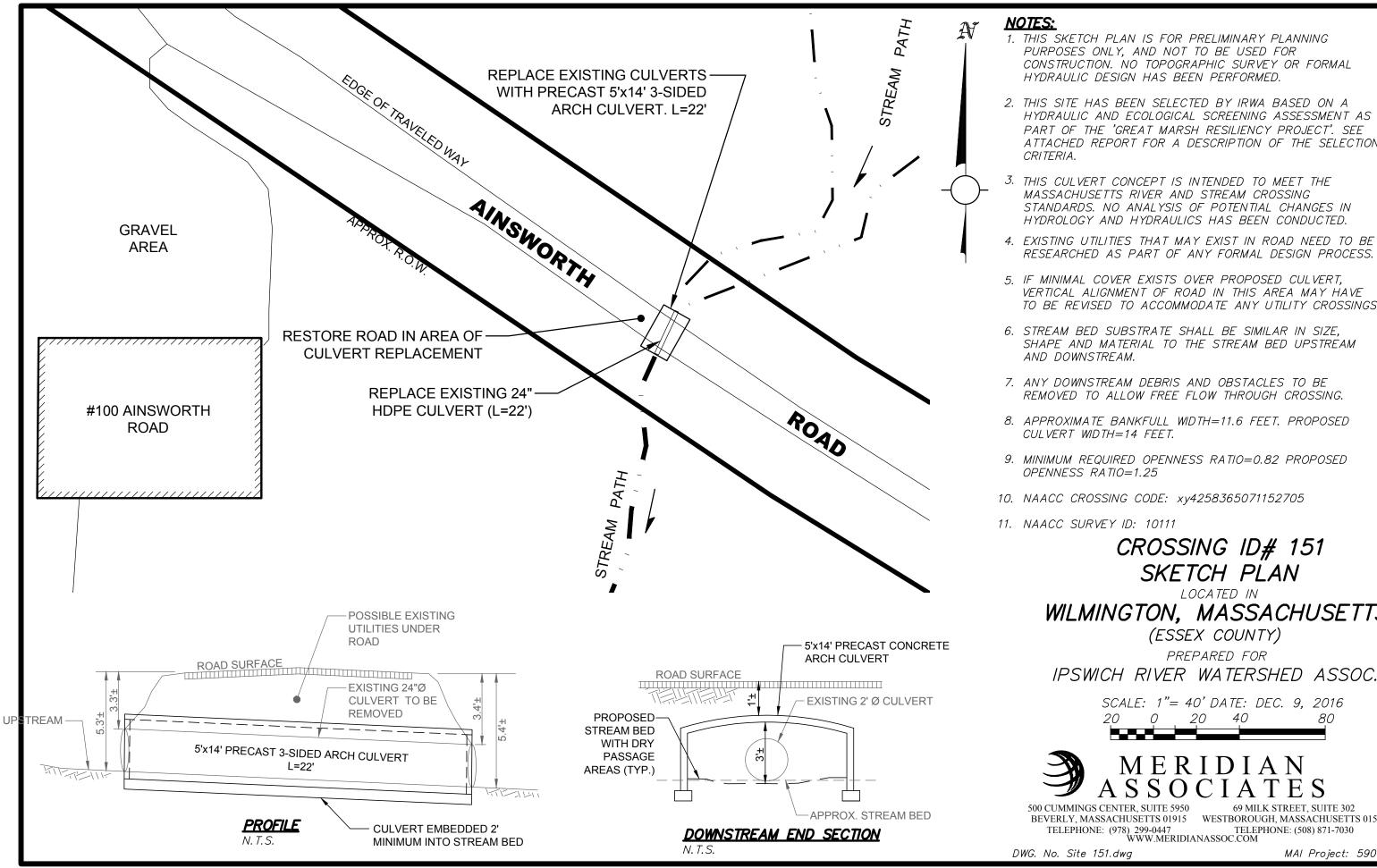

WILMINGTON, MASSACHUSETTS

IPSWICH RIVER WATERSHED ASSOC.

SCALE: 1"= 40' DATE: DEC. 29, 2016

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (508) 871-7030




RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

WILMINGTON, MASSACHUSETTS

SCALE: 1"= 40' DATE: DEC. 9, 2016

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM



RESEARCHED AS PART OF ANY FORMAL DESIGN PROCESS.

VERTICAL ALIGNMENT OF ROAD IN THIS AREA MAY HAVE TO BE REVISED TO ACCOMMODATE ANY UTILITY CROSSINGS.

WILMINGTON, MASSACHUSETTS

BEVERLY, MASSACHUSETTS 01915 WESTBOROUGH, MASSACHUSETTS 01581 TELEPHONE: (978) 299-0447 TELEPHONE: (508) 871-7030 WWW.MERIDIANASSOC.COM

## Appendix 4 – Full Result Tables

Printout of excel table for entire region (4 types) are printed in the pages below. Electronic copies of GIS and excel data sets are available by contacting the Ipswich River Watershed Association (<u>bkelder@ipswichriver.org</u>).

## Table of Contents (Appendix 4)

| Dams                             |  |
|----------------------------------|--|
| Non-Tidal Crossings              |  |
| Tidal Crossings                  |  |
| Coastal Stabilization Structures |  |

### Dams

|             | Priorit   | y Rankir | ng   |                                               |              |                       | F              | Priority Scoring |            | Active     |         |                 |
|-------------|-----------|----------|------|-----------------------------------------------|--------------|-----------------------|----------------|------------------|------------|------------|---------|-----------------|
|             |           | Í        | Ĭ    |                                               |              |                       |                |                  |            | Project or |         |                 |
|             | Final     |          |      |                                               |              |                       | Infrastructure | Ecological       | Priority   | Local      |         | Exclude         |
| Dam ID      | Adjusted* | Overall  | Town | Dam Name                                      | Town         | Hazard Code           | Risk (RI)      | Impact (EI)      | Score (DP) | Priority   | Exclude | Reason          |
|             |           |          |      |                                               |              |                       |                |                  |            |            |         | Water           |
| MA00745     | -1        | 1        | -1   | Putnamville Reservoir Dam                     | Danvers      | High Hazard           | 2              | 1                | 3          | No         | Yes     | Supply          |
|             |           |          |      |                                               |              |                       |                |                  |            |            |         | Water           |
| MA00726     | -1        | 2        | -1   | Winona Pond Dam                               | Peabody      | High Hazard           | 2              | 0.5              | 2.5        | No         | Yes     | Supply          |
|             |           |          |      | Putnamville Reservoir West                    |              |                       |                |                  |            |            |         | Water           |
| MA00744     | -1        | 2        | -1   | Dike                                          | Danvers      | High Hazard           | 2              | 0.5              | 2.5        | No         | Yes     | Supply          |
|             |           |          |      | Putnamville Reservoir East                    |              |                       |                |                  |            |            |         | Water           |
| MA01297     | -1        | 2        | -1   | Dike                                          | Danvers      | High Hazard           | 2              | 0.5              | 2.5        | No         | Yes     | Supply          |
|             |           |          |      |                                               |              |                       |                | _                |            |            |         | Water           |
| MA01121     | -1        | 6        | -1   | Mill Pond Dam                                 | Burlington   | High Hazard           | 2              | 0                | 2          | No         | Yes     | Supply          |
|             |           |          |      |                                               |              |                       |                |                  |            |            |         | Water           |
| MA01123     | -1        | 6        | -1   | Mill Pond South Dike                          | Burlington   | High Hazard           | 2              | 0                | 2          | No         | Yes     | Supply          |
| 1400405     |           |          |      |                                               | 1            | Significant           |                |                  |            | N.,        | N/s s   | Water           |
| MA00165     | -1        | 8        | -1   | Dow Brook Reservoir Dam                       | lpswich      | Hazard                | 1              | 1                | 2          | No         | Yes     | Supply          |
| 1400400     |           |          |      | Lanahara Dasara'a Dara                        |              | Significant           | 1              | 4                | 0          | Nie        | Vee     | Water           |
| MA00182     | -1        | 8        | -1   | Longham Reservoir Dam<br>Emerson Brook Dam At | Wenham       | Hazard<br>Significant | 1              | 1                | 2          | No         | Yes     | Supply<br>Water |
| MA00273     | 0         | 17       | -1   | Lake Street                                   | Middleton    | Hazard                | 1              | 0.5              | 1.5        | No         | Yes     | Supply          |
| IVIA00273   | 0         | 17       | -1   |                                               | IVIIGUIELON  | Significant           | I              | 0.5              | 1.5        | NO         | Tes     | Water           |
| MA01139     | 0         | 17       | -1   | Suntaug Lake Dam                              | Peabody      | Hazard                | 1              | 0.5              | 1.5        | No         | Yes     | Supply          |
| INIAUT 133  | 0         | 17       | -1   |                                               | T eabouy     |                       | 1              | 0.5              | 1.5        | NO         | 163     | Water           |
| MA00230     | 0         | 23       | -1   | Bull Brook Reservoir Dam                      | lpswich      | Low Hazard            | 0.5            | 1                | 1.5        | No         | Yes     | Supply          |
| 101700200   | 0         | 20       |      | Lower Artichoke Reservoir                     | Ip3WiCI1     | Low Hazard            | 0.0            | 1                | 1.0        | NO         | 103     | Water           |
| MA00264     | 0         | 23       | -1   | Dam                                           | Newburyport  | Low Hazard            | 0.5            | 1                | 1.5        | No         | Yes     | Supply          |
| 1111 100201 |           | 20       |      | Dan                                           | rionbarypoir | Low Hazara            | 0.0            |                  | 1.0        | 110        | 100     | Water           |
| MA00295     | 0         | 23       | -1   | Middleton Pond Outlet Dam                     | Middleton    | Low Hazard            | 0.5            | 1                | 1.5        | No         | Yes     | Supply          |
|             |           |          |      |                                               |              |                       |                |                  |            |            |         | Water           |
| MA01600     | 0         | 23       | -1   | Artichoke River Dam                           | Newburyport  | Low Hazard            | 0.5            | 1                | 1.5        | No         | Yes     | Supply          |
|             |           |          |      | Mill Pond Reservoir North                     |              | Significant           |                |                  |            |            |         | Water           |
| MA01122     | 0         | 35       | -1   | Dike                                          | Burlington   | Hazard                | 1              | 0                | 1          | No         | Yes     | Supply          |
|             |           |          |      | Middleton Pond Southeast                      |              |                       |                |                  |            |            |         | Water           |
| MA02277     | 0         | 42       | -1   | Dike                                          | Middleton    | Low Hazard            | 0.5            | 0.5              | 1          | No         | Yes     | Supply          |
|             |           |          |      | Upper Artichoke Reservoir                     |              |                       |                |                  |            |            |         | Water           |
| MA00189     | 0         | 47       | -1   | Dam                                           | Newburyport  | Low Hazard            | 0.5            | 0.5              | 1          | No         | Yes     | Supply          |
|             |           |          |      | lpswich River Dam (South                      |              | Significant           |                |                  |            |            |         |                 |
| MA01137     | 1         | 5        | 1    | Middleton)                                    | Middleton    | Hazard                | 1              | 1.5              | 2.5        | Active     | No      |                 |
|             |           |          |      |                                               |              | Significant           |                |                  |            |            |         |                 |
| MA00159     | 2         | 8        | 1    | Howe Pond Dam                                 | Boxford      | Hazard                | 1              | 1                | 2          |            | No      |                 |

|                    | Priorit            | y Rankir | ig    |                           |                    |             | P                           | riority Scoring           |                        | Active                          |         |                   |
|--------------------|--------------------|----------|-------|---------------------------|--------------------|-------------|-----------------------------|---------------------------|------------------------|---------------------------------|---------|-------------------|
| Dam ID             | Final<br>Adjusted* | Overall  | Town  | Dam Name                  | Town               | Hazard Code | Infrastructure<br>Risk (RI) | Ecological<br>Impact (El) | Priority<br>Score (DP) | Project or<br>Local<br>Priority | Exclude | Exclude<br>Reason |
| Dalli ID           | Aujusieu           | Overall  | TOWIN | Dalli Nallie              | TOWN               | Significant |                             | Impact (EI)               |                        | Priority                        | Exclude | Reason            |
| MA00261            | 2                  | 8        | 1     | Pentucket Pond Outlet Dam | Coorgotown         | Hazard      | 1                           | 1                         | 2                      |                                 | No      |                   |
| MA00201            | 2                  | 0        | 1     |                           | Georgetown         | Significant | I                           | I                         | 2                      |                                 | INU     |                   |
| MA01604            | 2                  | 8        | 1     | Jewel Mill Dam            | Rowley             | Hazard      | 1                           | 1                         | 2                      | Priority                        | No      |                   |
| MA01004<br>MA00231 | 5                  | 13       | 1     | lpswich Mills Dam         | lpswich            | Low Hazard  | 0.5                         | 1.5                       | 2                      | Active                          | No      |                   |
| MA00231            | 5                  | 15       |       | Parker River Dam #1       | ID2MICIT           | LOW HAZAIU  | 0.5                         | 1.5                       | 2                      | Active                          | INO     |                   |
| MA00241            | 5                  | 13       | 1     |                           | Newbury            | Low Hazard  | 0.5                         | 1.5                       | 2                      |                                 | No      |                   |
| MA01198            | 5                  | 13       | 2     | Baldpate Pond Dam         | Boxford            | Low Hazard  | 0.5                         | 1.5                       | 2                      |                                 | No      |                   |
| MA01198<br>MA01610 | 8                  | 16       | 1     | Howletts Brook Dam        | Topsfield          | N/A         | 0.5                         | 2                         | 2                      | Priority                        | No      |                   |
| MAUTOTO            | 0                  | 10       |       |                           | Topslielu          | Significant | 0                           | 2                         | 2                      | FIIOIILY                        | INU     |                   |
| MA00158            | 9                  | 17       | 3     | Stiles Pond Outlet Dam    | Boxford            | Hazard      | 1                           | 0.5                       | 1.5                    |                                 | No      |                   |
| MA00156            | 9                  | 17       | 3     |                           | DUXIUIU            | Significant | 1                           | 0.5                       | 1.5                    |                                 | INU     |                   |
| MA01613            | 9                  | 17       | 2     | Bethune Pond Dam          | Topsfield          | Hazard      | 1                           | 0.5                       | 1.5                    |                                 | No      |                   |
| MAUTOTS            | 9                  | 17       | 2     |                           | Topslieid          | Significant | 1                           | 0.5                       | 1.5                    |                                 | INU     |                   |
| MA03006            | 9                  | 17       | 1     | Mill Pond Dam             | Middleton          | Hazard      | 1                           | 0.5                       | 1.5                    |                                 | No      |                   |
| MA00160            | 12                 | 22       | 4     |                           | Boxford            | Low Hazard  | 0.5                         | 0.5                       | 1.5                    |                                 | No      |                   |
| MA00100<br>MA00277 | 12                 | 22       |       | Mile Brook Dam            | Topsfield          | Low Hazard  | 0.5                         | 1                         | 1.5                    |                                 | No      |                   |
| MA00277<br>MA01143 | 12                 | 22       | 3     |                           |                    | Low Hazard  | 0.5                         | 1                         | 1.5                    |                                 | No      |                   |
| MA01143<br>MA01202 | 12                 | 22       | 4     |                           | Boxford            | Low Hazard  | 0.5                         | 1                         | 1.5                    |                                 | No      |                   |
| MA01202<br>MA01207 | 12                 | 22       | 4     | Rantoul Pond Dam          | lpswich            | Low Hazard  | 0.5                         | 1                         | 1.5                    |                                 | No      |                   |
| MA01207<br>MA01211 | 12                 | 22       |       | Mill Pond Dam             | Newbury            | Low Hazard  | 0.5                         | 1                         | 1.5                    |                                 | No      |                   |
| MA01211<br>MA01599 | 12                 | 22       | 2     |                           | ,                  | Low Hazard  | 0.5                         | 1                         | 1.5                    |                                 | No      |                   |
| MA01599<br>MA03008 | 12                 | 22       | 2     |                           |                    | Low Hazard  | 0.5                         | 1                         | 1.5                    |                                 | No      |                   |
| MA03008<br>MA00276 | 20                 | 34       | 2     | Willowdale Dam            | Newbury<br>Ipswich | N/A         | 0.5                         | 1.5                       | 1.5                    | Active                          | No      |                   |
| IVIA00276          | 20                 | - 34     | 3     |                           | ipswich            |             | 0                           | 1.5                       | 1.5                    | Active                          | INO     |                   |
| 144.044.00         | 21                 | 35       | 1     | Data shaff Data d Data    | A                  | Significant | 1                           | 0                         | 1                      |                                 | Nie     |                   |
| MA01133            | 21                 | 35       | 1     | Brackett Pond Dam         | Andover            | Hazard      | 1                           | 0                         | 1                      |                                 | No      |                   |
|                    | 01                 | 05       |       | Field Devid Devic         | A real extrem      | Significant |                             | 0                         | 4                      |                                 | Nia     |                   |
| MA01134            | 21                 | 35       | 1     | Field Pond Dam            | Andover            | Hazard      | 1                           | 0                         | 1                      |                                 | No      |                   |
|                    |                    | 05       |       |                           | D. J. J.           | Significant |                             | 0                         |                        |                                 |         |                   |
| MA01141            | 21                 | 35       | 1     | Elginwood Pond Dam        | Peabody            | Hazard      | 1                           | 0                         | 1                      |                                 | No      |                   |
|                    |                    | 05       |       |                           | A                  | Significant |                             | 0                         |                        |                                 |         |                   |
| MA03181            | 21                 | 35       | 1     | Collins Pond Dam          | Andover            | Hazard      | 1                           | 0                         | 1                      |                                 | No      |                   |

|         | Priorit   | y Rankin | g    |                             |               |             | F              | riority Scoring |            | Active     |         |         |
|---------|-----------|----------|------|-----------------------------|---------------|-------------|----------------|-----------------|------------|------------|---------|---------|
|         |           |          |      |                             |               |             |                |                 |            | Project or |         |         |
|         | Final     |          |      |                             |               |             | Infrastructure | Ecological      | Priority   | Local      |         | Exclude |
| Dam ID  | Adjusted* | Overall  | Town | Dam Name                    | Town          | Hazard Code | Risk (RI)      | Impact (EI)     | Score (DP) | Priority   | Exclude | Reason  |
|         |           |          |      |                             |               | Significant |                |                 |            |            |         |         |
| MA03217 | 21        | 35       | 1    | Field Pond Dike             | Andover       | Hazard      | 1              | 0               | 1          |            | No      |         |
| MA00243 | 26        | 41       | 2    | Lower Millpond Dam          | Rowley        | Low Hazard  | 0.5            | 0.5             | 1          |            | No      |         |
| MA01205 | 26        | 41       | 2    | Creighton Pond Dam          | Middleton     | Low Hazard  | 0.5            | 0.5             | 1          |            | No      |         |
| MA01206 | 26        | 41       | 2    | Farnums Mill Pond Dam       | North Andover | Low Hazard  | 0.5            | 0.5             | 1          |            | No      |         |
| MA01605 | 26        | 41       | 2    | Central Street Dam          | Rowley        | Low Hazard  | 0.5            | 0.5             | 1          |            | No      |         |
|         |           |          |      | Parker River Dam #4         |               |             |                |                 |            |            |         |         |
| MA00242 | 30        | 47       | 4    | (Blacksmith Shop)           | Newbury       | N/A         | 0              | 1               | 1          |            | No      |         |
| MA01525 | 30        | 47       | 6    | Lockwood Dam 1              | Boxford       | N/A         | 0              | 1               | 1          |            | No      |         |
| MA01590 | 30        | 47       | 3    | Prichard Pond Dam           | Middleton     | N/A         | 0              | 1               | 1          |            | No      |         |
|         |           |          |      | Parker River Dam #3 (Snuff  |               |             |                |                 |            |            |         |         |
| MA01596 | 30        | 47       | 4    | Mill)                       | Newbury       | N/A         | 0              | 1               | 1          |            | No      |         |
|         |           |          |      | Parker River Dam #5 (River  |               |             |                |                 |            |            |         |         |
| MA01598 | 30        | 47       | 4    | Street)                     | Newbury       | N/A         | 0              | 1               | 1          |            | No      |         |
| MA01603 | 30        | 47       | 4    | Ox Pasture Brook Dam        | Rowley        | N/A         | 0              | 1               | 1          |            | No      |         |
| MA01611 | 30        | 47       | 4    | Pleasure Pond Dam           | Topsfield     | N/A         | 0              | 1               | 1          |            | No      |         |
| MA01612 | 30        | 47       | 4    | Peirce Pond Dam             | Topsfield     | N/A         | 0              | 1               | 1          |            | No      |         |
| MA02989 | 30        | 47       | 4    | Argilla Farm Pond Dam       | lpswich       | N/A         | 0              | 1               | 1          |            | No      |         |
| MA03009 | 30        | 47       | 4    | Highfield Road Dam          | Newbury       | N/A         | 0              | 1               | 1          |            | No      |         |
| MA01201 | 40        | 57       | 7    | Fourmile Pond Dam           | Boxford       | Low Hazard  | 0.5            | 0               | 0.5        |            | No      |         |
| MA02504 | 40        | 57       | 1    | Bradford Pond Dam           | North Reading | Low Hazard  | 0.5            | 0               | 0.5        |            | No      |         |
| MA02512 | 40        | 57       | 5    | Deleano Pond Dam            | Andover       | Low Hazard  | 0.5            | 0               | 0.5        |            | No      |         |
| MA02514 | 40        | 57       | 3    | Salem Pond Dam              | North Andover | Low Hazard  | 0.5            | 0               | 0.5        |            | No      |         |
| MA02517 | 40        | 57       | 5    | Frye Pond Dam               | Andover       | Low Hazard  | 0.5            | 0               | 0.5        |            | No      |         |
|         |           |          |      | Parker River Dam #2 (Larkin |               |             |                |                 |            |            |         |         |
| MA00240 | 45        | 62       | 4    | Road)                       | Newbury       | N/A         | 0              | 0.5             | 0.5        | Priority   | No      |         |
| MA01199 | 45        | 62       | 8    | Lockwood Dam 3              | Boxford       | N/A         | 0              | 0.5             | 0.5        |            | No      |         |
| MA01592 | 45        | 62       | 4    | Boston Brook Dam            | North Andover | N/A         | 0              | 0.5             | 0.5        |            | No      |         |
|         |           |          |      | Parker River Dam South At   |               |             |                |                 |            |            |         |         |
| MA01597 | 45        | 62       | 9    | River St.                   | Newbury       | N/A         | 0              | 0.5             | 0.5        |            | No      |         |
| MA01602 | 45        | 62       | 5    | Country Club Pond Dam       | Rowley        | N/A         | 0              | 0.5             | 0.5        |            | No      |         |

|         | Priorit            | y Rankin | g    |                                                      |               |             | F                           | riority Scoring           |                        | Active                          |         |                   |
|---------|--------------------|----------|------|------------------------------------------------------|---------------|-------------|-----------------------------|---------------------------|------------------------|---------------------------------|---------|-------------------|
| Dam ID  | Final<br>Adjusted* | Overall  | Town | Dam Name                                             | Town          | Hazard Code | Infrastructure<br>Risk (RI) | Ecological<br>Impact (El) | Priority<br>Score (DP) | Project or<br>Local<br>Priority | Exclude | Exclude<br>Reason |
| MA02509 | 45                 | 62       | 6    | Ipswich Pond Dam                                     | Topsfield     | N/A         | 0                           | 0.5                       | 0.5                    |                                 | No      |                   |
| MA03227 | 45                 | 62       | 8    | Spofford Pond Outlet Dam                             | Boxford       | N/A         | 0                           | 0.5                       | 0.5                    |                                 | No      |                   |
| MA00181 | 45                 | 62       | 1    | Norwood Pond Dam                                     | Beverly       | N/A         | 0                           | 0.5                       | 0.5                    |                                 | No      |                   |
| MA03229 | 45                 | 62       | 8    | Fish Brook Dam                                       | Boxford       | N/A         | 0                           | 0.5                       | 0.5                    |                                 | No      |                   |
| MA00244 | 54                 | 71       | 6    | Upper Millpond Dam                                   | Rowley        | N/A         | 0                           | 0                         | 0                      |                                 | No      |                   |
| MA01138 | 54                 | 71       | 2    | Devils Dishfull Pond Dam                             | Peabody       | N/A         | 0                           | 0                         | 0                      |                                 | No      |                   |
|         |                    |          |      | Farm Pond - On Skug River                            |               |             |                             |                           |                        |                                 |         |                   |
| MA01594 | 54                 | 71       | 5    | D #10                                                | North Andover | N/A         | 0                           | 0                         | 0                      |                                 | No      |                   |
| MA02497 | 54                 | 71       | 7    | Skug River Dam                                       | Andover       | N/A         | 0                           | 0                         | 0                      |                                 | No      |                   |
| MA02510 | 54                 | 71       | 7    | Farm Trail Pond                                      | Topsfield     | N/A         | 0                           | 0                         | 0                      |                                 | No      |                   |
| MA02511 | 54                 | 71       | 7    | Otter Pond Dam                                       | Topsfield     | N/A         | 0                           | 0                         | 0                      |                                 | No      |                   |
| MA02515 | 54                 | 71       | 5    | Sudden Pond Dam                                      | North Andover | N/A         | 0                           | 0                         | 0                      |                                 | No      |                   |
| MA03007 | 54                 | 71       | 5    | Farr Pond Dam                                        | North Andover | N/A         | 0                           | 0                         | 0                      |                                 | No      |                   |
| MA03203 | 54                 | 71       | 4    | Coppermine Road Dam                                  | Middleton     | N/A         | 0                           | 0                         | 0                      |                                 | No      |                   |
| MA03204 | 54                 | 71       | 4    | Paradise Park Dam                                    | Middleton     | N/A         | 0                           | 0                         | 0                      |                                 | No      |                   |
| MA03218 | 54                 | 71       | 2    | Elginwood Pond Dam #2                                | Peabody       | N/A         | 0                           | 0                         | 0                      |                                 | No      |                   |
| MA03221 | 54                 | 71       | 2    | Puritan Lawn Pond Dam                                | Peabody       | N/A         | 0                           | 0                         | 0                      |                                 | No      |                   |
| MA03248 | 54                 | 71       | 1    | Pocahontas- Greenbelt Dam<br>Bradley Palmer Entrance | Lynnfield     | N/A         | 0                           | 0                         | 0                      |                                 | No      |                   |
| MA03338 | 54                 | 71       | 7    | Dam                                                  | Topsfield     | N/A         | 0                           | 0                         | 0                      |                                 | No      |                   |

## Non-Tidal Crossings

| IRWA     | Priority I | Rank |               |                  |                       | Pr             | ority Scoring |            |        |
|----------|------------|------|---------------|------------------|-----------------------|----------------|---------------|------------|--------|
| Crossing |            |      |               |                  |                       | Infrastructure | Ecological    | Priority   |        |
| ID       | Region     | Town | Town          | Structure Type   | Road                  | Risk (CRI)     | Impact (CEI)  | Score (CP) | Design |
| 188      | 1          | 1    | Wenham        | Single Culvert   | Dodge Row             | 5.0            | 4.9           | 9.9        | Yes    |
| 9011     | 2          | 1    | Topsfield     | Single Culvert   | Meetinghouse Lane     | 5.0            | 4.3           | 9.3        | Yes    |
| 472      | 3          | 1    | North Andover | Single Culvert   | Liberty Street        | 4.6            | 4.4           | 9.0        | Yes    |
| 670      | 4          | 2    | Topsfield     | Single Culvert   | Pond Street           | 5.0            | 3.9           | 8.9        | Yes    |
| 1054     | 5          | 1    | Newbury       | Single Culvert   | Coleman Road          | 5.0            | 3.9           | 8.9        | Yes    |
| 151      | 6          | 1    | Wilmington    | Single Culvert   | Ainsworth Road        | 5.0            | 3.7           | 8.7        | Yes    |
| 879      | 7          | 1    | Boxford       | Single Culvert   | Washington Street     | 5.0            | 3.7           | 8.7        |        |
| 421      | 8          | 1    | Andover       | Single Culvert   | Gray Road             | 4.0            | 4.6           | 8.6        | Yes    |
| 408      | 9          | 2    | Andover       | Single Culvert   | Salem Street          | 4.0            | 4.6           | 8.6        | Yes    |
| 862      | 10         | 1    | Georgetown    | Single Culvert   | Nelson Street         | 5.0            | 3.5           | 8.5        | Yes    |
| 435      | 11         | 3    | Topsfield     | Single Culvert   | River Rd              | 4.6            | 3.7           | 8.3        | Yes    |
| 84       | 12         | 1    | North Reading | Single Culvert   | Off of Concord Street | 5.0            | 3.3           | 8.3        |        |
| 859      | 13         | 2    | Boxford       | Multiple Culvert | Main Street           | 5.0            | 3.3           | 8.3        | Yes    |
| 990      | 14         | 1    | Rowley        | Single Culvert   | Main Street           | 3.6            | 4.7           | 8.3        | Yes    |
| 517      | 15         | 1    | Hamilton      | Single Culvert   | Winthrop Sreet        | 3.6            | 4.4           | 8.0        | Yes    |
| 753      | 16         | 1    | lpswich       | Single Culvert   | Pine Swamp Road       | 5.0            | 2.9           | 7.9        | Yes    |
| 681      | 17         | 3    | Boxford       | Single Culvert   | Main Street           | 3.0            | 4.8           | 7.8        | Yes    |
| 755      | 18         | 4    | Boxford       | Single Culvert   | Kelsey Road           | 5.0            | 2.7           | 7.7        | Yes    |
| 439      | 19         | 1    | Essex         | Single Culvert   | Story Street          | 4.0            | 3.7           | 7.7        | Yes    |
| 413      | 20         | 2    | Hamilton      | Single Culvert   | Moulton Street        | 5.0            | 2.7           | 7.7        |        |
| 1162     | 21         | 2    | Newbury       | Single Culvert   | Off Middle Road       | 4.6            | 3.0           | 7.6        |        |
| 1094     | 22         | 3    | Newbury       | Single Culvert   | Orchard Street        | 2.6            | 5.0           | 7.6        | Yes    |
| 765      | 23         | 5    | Boxford       | Single Culvert   | Off Styles pond road  | 2.6            | 5.0           | 7.6        |        |
| 898      | 24         | 2    | Rowley        | Single Culvert   | Daniels Rd            | 5.0            | 2.5           | 7.5        | Yes    |
| 860      | 25         | 2    | Georgetown    | Single Culvert   | Central Street        | 5.0            | 2.5           | 7.5        |        |
| 639      | 26         | 2    | lpswich       | Single Culvert   | Essex Road            | 5.0            | 2.4           | 7.4        |        |
| 587      | 27         | 2    | North Andover | Single Culvert   | Carlton Lane          | 3.6            | 3.6           | 7.2        | Yes    |
| 462      | 28         | 4    | Topsfield     | Single Culvert   | Summer Street         | 5.0            | 2.1           | 7.1        |        |
| 878      | 29         | 3    | Rowley        | Single Culvert   | Haverhill Street      | 5.0            | 2.1           | 7.1        | Yes    |
| 1231     | 30         | 1    | Newburyport   | Multiple Culvert | Pheasant Run Drive    | 5.0            | 2.1           | 7.1        |        |
| 788      | 31         | 4    | Rowley        | Single Culvert   | Boxford Road          | 5.0            | 2.1           | 7.1        |        |
| 9017     | 32         | 4    | Newbury       | Single Culvert   | Off_Middle Road       | 5.0            | 2.0           | 7.0        |        |
| 1155     | 33         | 1    | West Newbury  | Multiple Culvert | Georgetown Road       | 5.0            | 2.0           | 7.0        | Yes    |
| 292      | 34         | 3    | Hamilton      | Single Culvert   | Alan Road             | 5.0            | 2.0           | 7.0        |        |
| 484      | 35         | 6    | Boxford       | Single Culvert   | Middleton Road        | 4.0            | 3.0           | 7.0        |        |

| IRWA     | Priority | Rank |               |                  |                    | Pr             | iority Scoring |            |        |
|----------|----------|------|---------------|------------------|--------------------|----------------|----------------|------------|--------|
| Crossing |          |      |               |                  |                    | Infrastructure | Ecological     | Priority   |        |
| ID       | Region   | Town | Town          | Structure Type   | Road               | Risk (CRI)     | Impact (CEI)   | Score (CP) | Design |
| 9006     | 36       | 7    | Boxford       | Single Culvert   | Georgetown Road    | 5.0            | 2.0            | 7.0        |        |
| 874      | 37       | 3    | Georgetown    | Single Culvert   | East Street        | 5.0            | 2.0            | 7.0        |        |
| 633      | 38       | 5    | Topsfield     | Single Culvert   | North Street       | 5.0            | 2.0            | 7.0        |        |
| 341      | 39       | 3    | North Andover | Single Culvert   | Harold Parker Road | 5.0            | 1.9            | 6.9        |        |
| 1049     | 40       | 5    | Newbury       | Single Culvert   | Off Coleman Road   | 4.0            | 2.9            | 6.9        | Yes    |
| 758      | 41       | 5    | Rowley        | Single Culvert   | Newbury Road       | 5.0            | 1.9            | 6.9        |        |
| 86       | 42       | 2    | North Reading | Single Culvert   | Concord Street     | 5.0            | 1.9            | 6.9        |        |
| 697      | 43       | 3    | lpswich       | Single Culvert   | Pine Swamp road    | 5.0            | 1.8            | 6.8        | Yes    |
| 748      | 44       | 4    | lpswich       | Single Culvert   | Pineswamp Road     | 4.0            | 2.8            | 6.8        |        |
| 744      | 45       | 5    | lpswich       | Single Culvert   | Newbury Road       | 5.0            | 1.8            | 6.8        |        |
| 1187     | 46       | 6    | Newbury       | Multiple Culvert | Highfield Road     | 5.0            | 1.8            | 6.8        | Yes    |
| 1101     | 47       | 1    | Groveland     | Single Culvert   | Seven Star Road    | 5.0            | 1.8            | 6.8        |        |
| 308      | 48       | 2    | Essex         | Single Culvert   | Andrews Street     | 5.0            | 1.8            | 6.8        |        |
| 682      | 49       | 6    | lpswich       | Single Culvert   | Boxford Road       | 5.0            | 1.8            | 6.8        |        |
| 153      | 50       | 1    | Beverly       | Multiple Culvert | Landers Drive      | 5.0            | 1.8            | 6.8        |        |
| 1158     | 51       | 2    | West Newbury  | Single Culvert   | Hilltop Circle     | 5.0            | 1.7            | 6.7        |        |
| 906      | 52       | 8    | Boxford       | Single Culvert   | Main Street        | 4.6            | 2.1            | 6.7        |        |
| 629      | 53       | 6    | Topsfield     | Single Culvert   | Wildes Road        | 5.0            | 1.7            | 6.7        |        |
| 1091     | 54       | 2    | Groveland     | Single Culvert   | Bear hill road     | 4.0            | 2.7            | 6.7        | No     |
| 60       | 55       | 1    | Reading       | Single Culvert   | Haverhill          | 4.6            | 2.1            | 6.7        |        |
| 415      | 56       | 3    | Andover       | Single Culvert   | Korinthian Way     | 5.0            | 1.7            | 6.7        | Yes    |
| 916      | 57       | 9    | Boxford       | Single Culvert   | Willow Road        | 5.0            | 1.7            | 6.7        |        |
| 100      | 58       | 1    | Middleton     | Single Culvert   | River Street       | 5.0            | 1.7            | 6.7        |        |
| 754      | 59       | 4    | North Andover | Single Culvert   | Saw Mill Road      | 5.0            | 1.7            | 6.7        |        |
| 494      | 60       | 10   | Boxford       | Single Culvert   | Lockwood Lane      | 5.0            | 1.7            | 6.7        | Yes    |
| 638      | 61       | 11   | Boxford       | Single Culvert   | Lawrence Road      | 5.0            | 1.7            | 6.7        | Yes    |
| 319      | 62       | 4    | Hamilton      | Single Culvert   | bridge street      | 4.0            | 2.7            | 6.7        | Yes    |
| 868      | 63       | 6    | Rowley        | Single Culvert   | Dodge Road         | 5.0            | 1.7            | 6.7        |        |
| 902      | 64       | 4    | Georgetown    | Single Culvert   | Spofford Street    | 4.6            | 2.0            | 6.6        | Yes    |
| 272      | 65       | 4    | Andover       | Single Culvert   | Jenkins Road       | 5.0            | 1.6            | 6.6        |        |
| 396      | 66       | 5    | Hamilton      | Multiple Culvert | Morris Avenue      | 5.0            | 1.6            | 6.6        |        |
| 636      | 67       | 5    | North Andover | Single Culvert   | Candlestick Rd     | 4.6            | 2.0            | 6.6        |        |
| 896      | 68       | 7    | Rowley        | Single Culvert   | Haverhill Street   | 5.0            | 1.6            | 6.6        |        |
| 910      | 69       | 12   | Boxford       | Single Culvert   | Willow Road        | 3.6            | 3.0            | 6.6        | Yes    |
| 626      | 70       | 7    | Topsfield     | Single Culvert   | Wildes Road        | 5.0            | 1.6            | 6.6        |        |

| IRWA     | Priority | Rank |               |                  |                            | Pr             | ority Scoring |            |        |
|----------|----------|------|---------------|------------------|----------------------------|----------------|---------------|------------|--------|
| Crossing | -        |      |               |                  |                            | Infrastructure | Ecological    | Priority   |        |
| ID       | Region   | Town | Town          | Structure Type   | Road                       | Risk (CRI)     | Impact (CEI)  | Score (CP) | Design |
| 449      | 71       | 3    | Essex         | Single Culvert   | Lufkin Road                | 5.0            | 1.6           | 6.6        | Yes    |
| 240      | 72       | 2    | Wenham        | Single Culvert   | Larch Row                  | 5.0            | 1.6           | 6.6        |        |
| 6107     | 73       | 2    | Wilmington    | Single Culvert   | Glen Road                  | 5.0            | 1.6           | 6.6        |        |
| 1125     | 74       | 7    | Newbury       | Multiple Culvert | Main Street                | 4.0            | 2.6           | 6.6        | Yes    |
| 355      | 75       | 4    | Essex         | Single Culvert   | icehouse Ln                | 5.0            | 1.6           | 6.6        |        |
| 784      | 76       | 13   | Boxford       | Culvert          | Herrick Road               | 5.0            | 1.6           | 6.6        |        |
| 7052     | 77       | 5    | Georgetown    | Multiple Culvert | Church Street              | 5.0            | 1.5           | 6.5        |        |
| 176      | 78       | 2    | Beverly       | Culvert          | Grover Road                | 5.0            | 1.5           | 6.5        |        |
| 214      | 79       | 3    | Wenham        | Culvert          | Dodges Row                 | 5.0            | 1.5           | 6.5        |        |
| 850      | 80       | 8    | Rowley        | Single Culvert   | Kathleen Circle            | 4.0            | 2.5           | 6.5        | Yes    |
| 115      | 81       | 2    | Middleton     | Single Culvert   | Boston Street              | 5.0            | 1.5           | 6.5        |        |
| 335      | 82       | 6    | Hamilton      | Single Culvert   | Bay Road                   | 4.0            | 2.5           | 6.5        |        |
| 163      | 83       | 4    | Wenham        | Single Culvert   | Hull Street                | 5.0            | 1.5           | 6.5        |        |
| 648      | 84       | 6    | North Andover | Single Culvert   | Johnson Street             | 4.6            | 1.9           | 6.5        | Yes    |
| 485      | 85       | 5    | Andover       | Single Culvert   | Prospect Road              | 5.0            | 1.5           | 6.5        |        |
| 622      | 86       | 14   | Boxford       | Single Culvert   | Main Street                | 5.0            | 1.4           | 6.4        |        |
| 866      | 87       | 9    | Rowley        | Single Culvert   | Haverhill St               | 5.0            | 1.4           | 6.4        | Yes    |
| 1030     | 88       | 6    | Georgetown    | Multiple Culvert | Brookmeadow Lane           | 4.6            | 1.8           | 6.4        | No     |
| 867      | 89       | 10   | Rowley        | Multiple Culvert | Haverhill                  | 5.0            | 1.4           | 6.4        |        |
| 591      | 90       | 7    | lpswich       | Single Culvert   | Heatherside Lane           | 5.0            | 1.4           | 6.4        |        |
| 9008     | 91       | 11   | Rowley        | Single Culvert   | Haverhill Street           | 5.0            | 1.4           | 6.4        |        |
| 470      | 92       | 8    | Topsfield     | Single Culvert   | Lockwood Lane              | 5.0            | 1.4           | 6.4        |        |
| 9005     | 93       | 8    | lpswich       | Single Culvert   | Linebrook Road             | 5.0            | 1.4           | 6.4        |        |
| 926      | 94       | 12   | Rowley        | Open Bottom Arch | Independence St            | 4.6            | 1.8           | 6.4        |        |
| 46       | 95       | 1    | Billerica     | Single Culvert   | Cook Street                | 5.0            | 1.4           | 6.4        |        |
| 838      | 96       | 7    | Georgetown    | Open Bottom Arch | Georgetown Road            | 5.0            | 1.4           | 6.4        | Yes    |
| 526      | 97       | 15   | Boxford       | Single Culvert   | Surrey Lane                | 5.0            | 1.3           | 6.3        |        |
| 618      | 98       | 7    | North Andover | Single Culvert   | Route 114/ Turnpike Street | 4.6            | 1.7           | 6.3        |        |
| 1189     | 99       | 8    | Newbury       | Single Culvert   | Green Street               | 5.0            | 1.3           | 6.3        |        |
| 982      | 100      | 13   | Rowley        | Single Culvert   | Cross St                   | 5.0            | 1.3           | 6.3        |        |
| 466      | 101      | 7    | Hamilton      | Single Culvert   | Highland Street            | 5.0            | 1.3           | 6.3        |        |
| 6961     | 102      | 16   | Boxford       | Single Culvert   | Great Pond Drive           | 5.0            | 1.3           | 6.3        |        |
| 1203     | 103      | 9    | Newbury       | Multiple Culvert | Parker Street              | 5.0            | 1.3           | 6.3        |        |
| 338      | 104      | 6    | Andover       | Single Culvert   | Jenkins Road               | 4.6            | 1.7           | 6.3        |        |
| 1124     | 105      | 3    | West Newbury  | Single Culvert   | Crane Neck Street          | 5.0            | 1.3           | 6.3        |        |

| IRWA     | Priority I | Rank |               |                  |                          | Pr             | iority Scoring |            |        |
|----------|------------|------|---------------|------------------|--------------------------|----------------|----------------|------------|--------|
| Crossing |            |      |               |                  |                          | Infrastructure | Ecological     | Priority   |        |
| ID       | Region     | Town | Town          | Structure Type   | Road                     | Risk (CRI)     | Impact (CEI)   | Score (CP) | Design |
| 1056     | 106        | 10   | Newbury       | Single Culvert   | School Street            | 5.0            | 1.3            | 6.3        | Yes    |
| 912      | 107        | 8    | Georgetown    | Multiple Culvert | Brook Street             | 5.0            | 1.3            | 6.3        |        |
| 857      | 108        | 14   | Rowley        | Single Culvert   | Haverhill St             | 5.0            | 1.3            | 6.3        |        |
| 498      | 109        | 17   | Boxford       | Single Culvert   | Silverbrook Road         | 4.0            | 2.2            | 6.2        | Yes    |
| 85       | 110        | 3    | North Reading | Single Culvert   | Off of Concord Street    | 4.6            | 1.6            | 6.2        |        |
| 903      | 111        | 9    | Georgetown    | Single Culvert   | Hardy Terrace            | 4.6            | 1.6            | 6.2        |        |
| 218      | 112        | 4    | North Reading | Single Culvert   | Central Street           | 5.0            | 1.2            | 6.2        |        |
| 829      | 113        | 18   | Boxford       | Single Culvert   | Baldpate Road            | 5.0            | 1.2            | 6.2        | Yes    |
| 827      | 114        | 9    | lpswich       | Multiple Culvert | Mitchell Road            | 5.0            | 1.2            | 6.2        |        |
| 1153     | 115        | 4    | West Newbury  | Multiple Culvert | Crane Neck Street        | 4.0            | 2.2            | 6.2        | Yes    |
| 56       | 116        | 1    | Peabody       | Single Culvert   | Lowell Street            | 5.0            | 1.2            | 6.2        |        |
| 405      | 117        | 7    | Andover       | Single Culvert   | lvy Lane                 | 4.0            | 2.2            | 6.2        |        |
| 109      | 118        | 3    | Middleton     | Single Culvert   | River Street             | 4.6            | 1.6            | 6.2        |        |
| 552      | 119        | 9    | Topsfield     | Bridge           | Thompson Lane            | 4.6            | 1.5            | 6.1        |        |
| 278      | 120        | 4    | Middleton     | Culvert          | Coppermine Road          | 5.0            | 1.1            | 6.1        |        |
| 474      | 121        | 10   | Topsfield     | Single Culvert   | High Street              | 5.0            | 1.1            | 6.1        |        |
| 99       | 122        | 5    | North Reading | Single Culvert   | Park Street              | 5.0            | 1.1            | 6.1        |        |
| 691      | 123        | 10   | lpswich       | Bridge           | County Rd                | 5.0            | 1.1            | 6.1        |        |
| 1075     | 124        | 10   | Georgetown    | Multiple Culvert | Charles Street           | 5.0            | 1.1            | 6.1        |        |
| 229      | 125        | 5    | Wenham        | Single Culvert   | Lake Avenue              | 5.0            | 1.1            | 6.1        |        |
| 557      | 126        | 11   | lpswich       | Single Culvert   | off of Waldingfield Road | 5.0            | 1.1            | 6.1        |        |
| 807      | 127        | 15   | Rowley        | Bridge           | Turnpike Road            | 5.0            | 1.1            | 6.1        |        |
| 925      | 128        | 16   | Rowley        | Single Culvert   | Bradford Street          | 5.0            | 1.1            | 6.1        |        |
| 161      | 129        | 6    | Wenham        | Culvert          | Hull Street              | 4.0            | 2.1            | 6.1        | Yes    |
| 243      | 130        | 7    | Wenham        | Single Culvert   | Danes Way                | 4.6            | 1.5            | 6.1        |        |
| 791      | 131        | 8    | North Andover | Single Culvert   | Winter Street            | 5.0            | 1.0            | 6.0        |        |
| 333      | 132        | 8    | Hamilton      | Single Culvert   | Highland Street          | 5.0            | 1.0            | 6.0        |        |
| 1164     | 133        | 11   | Newbury       | Multiple Culvert | Middle Road              | 5.0            | 1.0            | 6.0        | Yes    |
| 453      | 134        | 9    | North Andover | Single Culvert   | Turnpike Street          | 5.0            | 1.0            | 6.0        |        |
| 759      | 135        | 12   | lpswich       | Open Bottom Arch | Linebrook Road           | 5.0            | 1.0            | 6.0        |        |
| 9009     | 136        | 19   | Boxford       | Single Culvert   | Off_Pinehurst Drive      | 5.0            | 1.0            | 6.0        |        |
| 1171     | 137        | 5    | West Newbury  | Multiple Culvert | Georgetown Road          | 5.0            | 0.9            | 5.9        |        |
| 885      | 138        | 11   | Georgetown    | Single Culvert   | East Main Street         | 5.0            | 0.9            | 5.9        |        |
| 881      | 139        | 17   | Rowley        | Single Culvert   | Newburyport Turnpike     | 4.0            | 1.9            | 5.9        |        |
| 820      | 140        | 20   | Boxford       | Single Culvert   | Off Ipswich Road         | 5.0            | 0.9            | 5.9        |        |

| IRWA     | Priority I | Rank |               |                  |                        | Pr             | iority Scoring |            |        |
|----------|------------|------|---------------|------------------|------------------------|----------------|----------------|------------|--------|
| Crossing |            |      |               |                  |                        | Infrastructure | Ecological     | Priority   |        |
| ID       | Region     | Town | Town          | Structure Type   | Road                   | Risk (CRI)     | Impact (CEI)   | Score (CP) | Design |
| 564      | 141        | 11   | Topsfield     | Single Culvert   | Bare Hill Road         | 4.0            | 1.9            | 5.9        |        |
| 181      | 142        | 3    | Beverly       | Single Culvert   | DODGE STREET           | 4.6            | 1.3            | 5.9        |        |
| 1026     | 143        | 12   | Georgetown    | Multiple Culvert | Jewett Street          | 5.0            | 0.8            | 5.8        |        |
| 534      | 144        | 10   | North Andover | Multiple Culvert | Rt 114/Turnpike Street | 2.2            | 3.6            | 5.8        |        |
| 1020     | 145        | 18   | Rowley        | Single Culvert   | Newburyport Turnpike   | 5.0            | 0.8            | 5.8        |        |
| 705      | 146        | 13   | lpswich       | Single Culvert   | Hodgkins               | 4.6            | 1.2            | 5.8        |        |
| 273      | 147        | 5    | Middleton     | Single Culvert   | Forest Street          | 4.6            | 1.2            | 5.8        | Yes    |
| 706      | 148        | 14   | lpswich       | Bridge           | Hayward Street         | 4.6            | 1.2            | 5.8        |        |
| 786      | 149        | 21   | Boxford       | Single Culvert   | King George Drive      | 3.6            | 2.2            | 5.8        |        |
| 795      | 150        | 22   | Boxford       | Single Culvert   | Ipswich Road           | 5.0            | 0.8            | 5.8        |        |
| 1234     | 151        | 2    | Newburyport   | Single Culvert   | Storeybrook Drive      | 2.6            | 3.1            | 5.7        |        |
| 35       | 152        | 3    | Wilmington    | Single Culvert   | Forest Street          | 4.6            | 1.1            | 5.7        |        |
| 274      | 153        | 6    | Middleton     | Single Culvert   | Forest Street          | 3.6            | 2.1            | 5.7        | Yes    |
| 1218     | 154        | 3    | Newburyport   | Multiple Culvert | Hale Street            | 4.0            | 1.7            | 5.7        | Yes    |
| 876      | 155        | 13   | Georgetown    | Multiple Culvert | Nelson Street          | 3.6            | 2.1            | 5.7        |        |
| 1228     | 156        | 4    | Newburyport   | Bridge           | Doe Run Drive          | 5.0            | 0.7            | 5.7        |        |
| 1080     | 157        | 14   | Georgetown    | Bridge           | Off_Dereck Circle      | 5.0            | 0.7            | 5.7        |        |
| 232      | 158        | 6    | North Reading | Single Culvert   | Hillview Road          | 5.0            | 0.7            | 5.7        |        |
| 16       | 159        | 4    | Wilmington    | Single Culvert   | Beech Street           | 5.0            | 0.7            | 5.7        | Yes    |
| 9043     | 160        | 8    | Wenham        | Bridge           | Topsfield Nature Trail | 4.6            | 1.1            | 5.7        |        |
| 279      | 161        | 9    | Wenham        | Bridge           | Danvers Rail Trail     | 5.0            | 0.6            | 5.6        |        |
| 632      | 162        | 11   | North Andover | Single Culvert   | Chestnut Street        | 4.0            | 1.6            | 5.6        | Yes    |
| 769      | 163        | 15   | lpswich       | Single Culvert   | Linebrook Road         | 4.0            | 1.6            | 5.6        |        |
| 9040     | 164        | 23   | Boxford       | Bridge           | Off Willow Road        | 4.6            | 1.0            | 5.6        |        |
| 907      | 165        | 15   | Georgetown    | Single Culvert   | Andover Street         | 4.0            | 1.6            | 5.6        |        |
| 246      | 166        | 10   | Wenham        | Single Culvert   | Rubbly Road            | 4.0            | 1.6            | 5.6        |        |
| 1186     | 167        | 12   | Newbury       | Single Culvert   | Newburyport turnpike   | 5.0            | 0.6            | 5.6        |        |
| 843      | 168        | 24   | Boxford       | Single Culvert   | Porter Road            | 0.6            | 5.0            | 5.6        | Yes    |
| 483      | 169        | 9    | Hamilton      | Open Bottom Arch | Bay Road               | 5.0            | 0.6            | 5.6        |        |
| 722      | 170        | 12   | North Andover | Multiple Culvert | South Bradford Street  | 3.6            | 2.0            | 5.6        |        |
| 613      | 171        | 13   | North Andover | Single Culvert   | Willow Road            | 3.0            | 2.6            | 5.6        | Yes    |
| 800      | 172        | 16   | lpswich       | Single Culvert   | High Street            | 4.6            | 0.9            | 5.5        |        |
| 923      | 173        | 19   | Rowley        | Single Culvert   | Summer Street          | 4.0            | 1.5            | 5.5        |        |
| 468      | 174        | 12   | Topsfield     | Single Culvert   | School Street          | 5.0            | 0.5            | 5.5        |        |
| 821      | 175        | 25   | Boxford       | Single Culvert   | Ipswich Road           | 4.6            | 0.9            | 5.5        |        |

| IRWA     | Priority I | Rank |               |                  |                      | Pr             | ority Scoring |            |        |
|----------|------------|------|---------------|------------------|----------------------|----------------|---------------|------------|--------|
| Crossing |            |      |               |                  |                      | Infrastructure | Ecological    | Priority   |        |
| ID       | Region     | Town | Town          | Structure Type   | Road                 | Risk (CRI)     | Impact (CEI)  | Score (CP) | Design |
| 935      | 176        | 20   | Rowley        | Single Culvert   | Newburyport Turnpike | 4.0            | 1.5           | 5.5        |        |
| 148      | 177        | 5    | Wilmington    | Multiple Culvert | Woburn Street        | 2.2            | 3.2           | 5.4        | Yes    |
| 628      | 178        | 13   | Topsfield     | Single Culvert   | East St              | 4.0            | 1.4           | 5.4        |        |
| 1225     | 179        | 5    | Newburyport   | Multiple Culvert | Hale Street          | 4.0            | 1.4           | 5.4        | Yes    |
| 282      | 180        | 1    | Danvers       | Single Culvert   | Valley Road          | 4.0            | 1.4           | 5.4        |        |
| 481      | 181        | 14   | Topsfield     | Single Culvert   | Washington Street    | 4.0            | 1.4           | 5.4        |        |
| 9033     | 182        | 26   | Boxford       | Single Culvert   | High Ridge Road      | 4.0            | 1.4           | 5.4        |        |
| 661      | 183        | 15   | Topsfield     | Single Culvert   | Off_Haverhill Street | 3.6            | 1.8           | 5.4        | No     |
| 519      | 184        | 14   | North Andover | Multiple Culvert | Brook Strete         | 4.0            | 1.3           | 5.3        | Yes    |
| 761      | 185        | 17   | lpswich       | Single Culvert   | Linebrook Rd         | 4.0            | 1.3           | 5.3        |        |
| 680      | 186        | 18   | lpswich       | Single Culvert   | NEWBURYPORT TURNPIKE | 4.0            | 1.3           | 5.3        |        |
| 9016     | 187        | 13   | Newbury       | Bridge           | Off Middle Road      | 4.0            | 1.3           | 5.3        |        |
| 147      | 188        | 6    | Wilmington    | Open Bottom Arch | Ainsworth Road       | 4.0            | 1.3           | 5.3        |        |
| 239      | 189        | 7    | North Reading | Single Culvert   | Central Street       | 4.6            | 0.6           | 5.2        |        |
| 523      | 190        | 27   | Boxford       | Single Culvert   | Silver Brook Road    | 2.0            | 3.2           | 5.2        | Yes    |
| 329      | 191        | 7    | Middleton     | Bridge           | Peabody Street       | 5.0            | 0.2           | 5.2        |        |
| 198      | 192        | 8    | North Reading | Single Culvert   | Wagon Drive          | 4.0            | 1.2           | 5.2        |        |
| 149      | 193        | 4    | Beverly       | Open Bottom Arch | Essex Street         | 4.0            | 1.2           | 5.2        |        |
| 1238     | 194        | 6    | Newburyport   | Single Culvert   | Virginia Lane        | 2.6            | 2.6           | 5.2        |        |
| 614      | 195        | 16   | Topsfield     | Culvert          | Route 1              | 4.0            | 1.2           | 5.2        | Yes    |
| 561      | 196        | 17   | Topsfield     | Single Culvert   | Parsonage Lane       | 4.0            | 1.1           | 5.1        |        |
| 394      | 197        | 18   | Topsfield     | Single Culvert   | river road           | 3.6            | 1.5           | 5.1        |        |
| 766      | 198        | 19   | lpswich       | Single Culvert   | Linebrook Road       | 4.0            | 1.1           | 5.1        |        |
| 701      | 199        | 20   | lpswich       | Bridge           | Topsfield Road       | 4.6            | 0.4           | 5.0        |        |
| 543      | 200        | 19   | Topsfield     | Multiple Culvert | North Street         | 0.0            | 5.0           | 5.0        |        |
| 166      | 201        | 8    | Middleton     | Single Culvert   | Middleton Street     | 3.6            | 1.3           | 4.9        |        |
| 678      | 202        | 15   | North Andover | Single Culvert   | Keyes Way            | 3.6            | 1.3           | 4.9        |        |
| 516      | 203        | 28   | Boxford       | Single Culvert   | Silverbrook Road     |                | 4.9           | 4.9        | Yes    |
| 579      | 204        | 29   | Boxford       | Single Culvert   | Topsfield Road       | 4.0            | 0.9           | 4.9        |        |
| 1076     | 205        | 14   | Newbury       | Multiple Culvert | Fatherland Drive     | 4.0            | 0.9           | 4.9        |        |
| 275      | 206        | 2    | Danvers       | Multiple Culvert | Locust Street        | 2.6            | 2.2           | 4.8        |        |
| 9003     | 207        | 9    | Middleton     | Bridge           | Off_N Liberty Street | 4.6            | 0.2           | 4.8        |        |
| 482      | 208        | 30   | Boxford       | Single Culvert   | Lockwood Lane        | 3.0            | 1.8           | 4.8        |        |
| 136      | 209        | 5    | Beverly       | Single Culvert   | Beaver Pond Road     | 4.0            | 0.8           | 4.8        |        |
| 420      | 210        | 20   | Topsfield     | Multiple Culvert | Maple Street         | 3.6            | 1.2           | 4.8        | Yes    |

| IRWA     | Priority I | Rank |               |                  |                            | Pr             | iority Scoring | ·          |        |
|----------|------------|------|---------------|------------------|----------------------------|----------------|----------------|------------|--------|
| Crossing |            |      |               |                  |                            | Infrastructure | Ecological     | Priority   |        |
| ID       | Region     | Town | Town          | Structure Type   | Road                       | Risk (CRI)     | Impact (CEI)   | Score (CP) | Design |
| 655      | 211        | 21   | lpswich       | Single Culvert   | Linebrook Road             | 3.0            | 1.8            | 4.8        |        |
| 235      | 212        | 11   | Wenham        | Multiple Culvert | Maple Street               | 3.6            | 1.2            | 4.8        |        |
| 644      | 213        | 16   | North Andover | Single Culvert   | Woodlea Road               | 3.6            | 1.1            | 4.7        |        |
| 382      | 214        | 5    | Essex         | Bridge           | Grove Street               | 4.0            | 0.7            | 4.7        |        |
| 7        | 215        | 7    | Wilmington    | Single Culvert   | Chestnut Street            | 0.0            | 4.6            | 4.6        | Yes    |
| 289      | 216        | 10   | Middleton     | Multiple Culvert | Liberty Street             | 3.2            | 1.4            | 4.6        |        |
| 9050     | 217        | 11   | Middleton     | Single Culvert   | Driveway off Boston Street | 3.6            | 1.0            | 4.6        |        |
| 257      | 218        | 12   | Wenham        | Single Culvert   | Larch Row                  | 2.6            | 2.0            | 4.6        |        |
| 230      | 219        | 13   | Wenham        | Multiple Culvert | Burley                     | 2.6            | 1.8            | 4.4        |        |
| 530      | 220        | 17   | North Andover | Single Culvert   | Johnson Street             | 3.6            | 0.8            | 4.4        |        |
| 1108     | 221        | 15   | Newbury       | Open Bottom Arch | River Road                 | 3.6            | 0.8            | 4.4        |        |
| 6896     | 222        | 18   | North Andover | Multiple Culvert | Cortland Drive             | 0.0            | 4.4            | 4.4        |        |
| 968      | 223        | 21   | Rowley        | Bridge           | Cross St                   | 4.0            | 0.3            | 4.3        |        |
| 403      | 224        | 31   | Boxford       | Single Culvert   | Middleton Road             | 3.0            | 1.3            | 4.3        |        |
| 890      | 225        | 22   | Rowley        | Single Culvert   | HaverhillSt                | 2.6            | 1.7            | 4.3        |        |
| 669      | 226        | 19   | North Andover | Multiple Culvert | Blueberry Hill Lane        | 3.2            | 1.1            | 4.3        |        |
| 656      | 227        | 20   | North Andover | Single Culvert   | Rea Street                 | 3.0            | 1.3            | 4.3        |        |
| 570      | 228        | 21   | Topsfield     | Bridge           | Haverill Road              | 3.6            | 0.7            | 4.3        | Yes    |
| 339      | 229        | 6    | Essex         | Single Culvert   | Apple Street               | 2.6            | 1.7            | 4.3        |        |
| 261      | 230        | 8    | Andover       | Single Culvert   | Route 125/Andover Bypass   | 2.6            | 1.6            | 4.2        |        |
| 326      | 231        | 21   | North Andover | Single Culvert   | stearns pond rd            |                | 4.2            | 4.2        |        |
| 68       | 232        | 8    | Wilmington    | Single Culvert   | Adams Street               | 4.0            | 0.2            | 4.2        | Yes    |
| 487      | 233        | 22   | Topsfield     | Single Culvert   | Boxford Road               | 2.6            | 1.6            | 4.2        | Yes    |
| 870      | 234        | 16   | Georgetown    | Ford             | Pingree Farm Road          | 3.6            | 0.5            | 4.1        |        |
| 11       | 235        | 2    | Peabody       | Multiple Culvert | Lake Street                | 0.0            | 4.1            | 4.1        |        |
| 6995     | 236        | 32   | Boxford       | Culvert          | Brook Road                 | 0.0            | 4.1            | 4.1        |        |
| 10111    | 237        | 1    | Salisbury     | Culvert          | Route 110                  | -1.0           | 4.1            | 4.1        | Yes    |
| 550      | 238        | 23   | Topsfield     | Single Culvert   | North St                   | 0.6            | 3.4            | 4.0        | Yes    |
| 505      | 239        | 7    | Essex         | Bridge           | John Wise Avenue           | 2.6            | 1.3            | 3.9        |        |
| 344      | 240        | 8    | Essex         | Single Culvert   | Southern Avenue            |                | 3.9            | 3.9        |        |
| 10109    | 241        | 2    | Salisbury     | Culvert          | Elmwood Street             | 0.0            | 3.9            | 3.9        | Yes    |
| 1173     | 242        | 6    | West Newbury  | Bridge           | Tewksbury Lane             | 3.0            | 0.8            | 3.8        |        |
| 675      | 243        | 22   | North Andover | Single Culvert   | Blue Ridge Road            | 0.0            | 3.7            | 3.7        | Yes    |
| 938      | 244        | 23   | Rowley        | Single Culvert   | Church St                  | 1.6            | 1.9            | 3.5        |        |
| 209      | 245        | 3    | Danvers       | Single Culvert   | Ferncroft Road             | 2.2            | 1.3            | 3.5        |        |

| IRWA     | Priority | Rank |               |                  |                                     | Pr             | iority Scoring |            |        |
|----------|----------|------|---------------|------------------|-------------------------------------|----------------|----------------|------------|--------|
| Crossing | -        |      |               |                  |                                     | Infrastructure | Ecological     | Priority   |        |
| ID       | Region   | Town | Town          | Structure Type   | Road                                | Risk (CRI)     | Impact (CEI)   | Score (CP) | Design |
| 1240     | 246      | 7    | Newburyport   | Single Culvert   | Lt Leary Drive                      | 1.6            | 1.9            | 3.5        |        |
| 1003     | 247      | 17   | Georgetown    | Single Culvert   | Jewett Street                       | 0.0            | 3.5            | 3.5        | Yes    |
| 616      | 248      | 22   | lpswich       | Single Culvert   | Topsfield Road                      | 0.0            | 3.4            | 3.4        | Yes    |
| 426      | 249      | 9    | Essex         | Single Culvert   | Martin Street                       | 2.6            | 0.8            | 3.4        |        |
| 10112    | 250      | 3    | Salisbury     | Culvert          | unnamed                             | -1.0           | 3.4            | 3.4        | Yes    |
| 10116    | 251      | 4    | Salisbury     | Multiple Culvert | Forest Road                         | 2.2            | 1.1            | 3.3        |        |
| 402      | 252      | 10   | Hamilton      | Single Culvert   | Moulton Street                      | 1.0            | 2.3            | 3.3        |        |
| 48       | 253      | 3    | Peabody       | Bridge           | Crystal Drive                       | 1.6            | 1.6            | 3.2        |        |
| 814      | 254      | 33   | Boxford       | Single Culvert   | Baldpate Road                       | 0.0            | 3.2            | 3.2        | Yes    |
| 1053     | 255      | 16   | Newbury       | Single Culvert   | Elm Street                          | 0.0            | 3.1            | 3.1        | Yes    |
| 776      | 256      | 23   | lpswich       | Single Culvert   | School Street                       | 1.6            | 1.5            | 3.1        |        |
| 548      | 257      | 23   | North Andover | Single Culvert   | Rt 114/Turnpike Street              |                | 3.0            | 3.0        |        |
| 414      | 258      | 9    | Andover       | Multiple Culvert | Holt Road                           | 0.6            | 2.4            | 3.0        |        |
| 63       | 259      | 9    | Wilmington    | Multiple Culvert | Clark Street                        | 0.0            | 2.9            | 2.9        | Yes    |
| 1017     | 260      | 18   | Georgetown    | Single Culvert   | North Street                        | 0.0            | 2.9            | 2.9        | No     |
| 139      | 261      | 9    | North Reading | Single Culvert   | Lowell Rd (Rt 62) & Main St (Rt 28) | 1.6            | 1.2            | 2.8        |        |
| 9048     | 262      | 4    | Danvers       | Bridge           | Off_Ferncroft Road                  | 2.6            | 0.2            | 2.8        |        |
| 668      | 263      | 24   | North Andover | Single Culvert   | Abbott St                           |                | 2.8            | 2.8        | Yes    |
| 917      | 264      | 19   | Georgetown    | Single Culvert   | Rail Bed off BROOK STREET           |                | 2.7            | 2.7        |        |
| 349      | 265      | 12   | Middleton     | Bridge           | East Street                         | 1.8            | 0.9            | 2.7        |        |
| 285      | 266      | 11   | Hamilton      | Multiple Culvert | Woodbury Rd                         | 0.6            | 2.1            | 2.7        |        |
| 527      | 267      | 12   | Hamilton      | Single Culvert   | Highland Street                     | 0.0            | 2.7            | 2.7        | Yes    |
| 236      | 268      | 5    | Danvers       | Single Culvert   | Old North Street                    | 1.2            | 1.4            | 2.6        |        |
| 51       | 269      | 4    | Peabody       | Multiple Culvert | Cobb Ave                            | 0.0            | 2.6            | 2.6        |        |
| 577      | 270      | 34   | Boxford       | Single Culvert   | Cahoon Road                         | 1.6            | 1.0            | 2.6        |        |
| 676      | 271      | 25   | North Andover | Open Bottom Arch | Nutmeg Lane                         | 2.6            | 0.0            | 2.6        |        |
| 380      | 272      | 13   | Middleton     | Single Culvert   | Essex Street                        |                | 2.6            | 2.6        | Yes    |
| 411      | 273      | 26   | North Andover | Single Culvert   | Sharpners Pond Road                 | 0.0            | 2.6            | 2.6        | Yes    |
| 1069     | 274      | 17   | Newbury       | Single Culvert   | Off_School Street                   | 0.0            | 2.5            | 2.5        | Yes    |
| 663      | 275      | 27   | North Andover | Single Culvert   | Abbott Street                       | 1.6            | 0.9            | 2.5        |        |
| 313      | 276      | 13   | Hamilton      | Single Culvert   | Myopia Hunt Club access Road        | 1.2            | 1.3            | 2.5        |        |
| 469      | 277      | 28   | North Andover | Single Culvert   | sharpners Pond Rd                   |                | 2.5            | 2.5        |        |
| 565      | 278      | 35   | Boxford       | Single Culvert   | Off_Winding Oaks Way                |                | 2.5            | 2.5        |        |
| 300      | 279      | 10   | Andover       | Single Culvert   | Harold Parker Road                  |                | 2.4            | 2.4        |        |
| 1119     | 280      | 3    | Groveland     | Multiple Culvert | Center Street                       | 1.6            | 0.8            | 2.4        |        |

| IRWA     | Priority F | Rank |               |                  |                          | Pr             | iority Scoring | . <u> </u> |        |
|----------|------------|------|---------------|------------------|--------------------------|----------------|----------------|------------|--------|
| Crossing |            |      |               |                  |                          | Infrastructure | Ecological     | Priority   |        |
| ID       | Region     | Town | Town          | Structure Type   | Road                     | Risk (CRI)     | Impact (CEI)   | Score (CP) | Design |
| 6930     | 281        | 24   | Rowley        | Multiple Culvert | Off_Boxford Road         | 0.0            | 2.4            | 2.4        |        |
| 607      | 282        | 36   | Boxford       | Single Culvert   | Topsfield Road           | 0.0            | 2.4            | 2.4        |        |
| 307      | 283        | 24   | Topsfield     | Multiple Culvert | Salem Road               | 0.0            | 2.4            | 2.4        |        |
| 78       | 284        | 1    | Lynnfield     | Single Culvert   | Main Street              | 0.6            | 1.8            | 2.4        |        |
| 203      | 285        | 14   | Middleton     | Single Culvert   | South Main Street Rt 114 |                | 2.4            | 2.4        |        |
| 1233     | 286        | 8    | Newburyport   | Single Culvert   | Little River Bike Trail  |                | 2.4            | 2.4        |        |
| 647      | 287        | 24   | lpswich       | Single Culvert   | Heartbreak Road          |                | 2.4            | 2.4        |        |
| 1230     | 288        | 9    | Newburyport   | Multiple Culvert | Fox Run Drive            | 0.6            | 1.7            | 2.3        |        |
| 1226     | 289        | 10   | Newburyport   | Single Culvert   | Little River Bike Trail  |                | 2.3            | 2.3        |        |
| 683      | 290        | 25   | lpswich       | Single Culvert   | Old Right Road           |                | 2.3            | 2.3        |        |
| 1130     | 291        | 18   | Newbury       | Single Culvert   | Burns WMA West Road      |                | 2.2            | 2.2        |        |
| 531      | 292        | 25   | Topsfield     | Multiple Culvert | Brookside Road           | 1.2            | 1.0            | 2.2        |        |
| 1058     | 293        | 19   | Newbury       | Single Culvert   | Off SCHOOL STREET        | 0.0            | 2.2            | 2.2        | Yes    |
| 200      | 294        | 14   | Wenham        | Bridge           | Essex street             | 1.6            | 0.6            | 2.2        |        |
| 1219     | 295        | 11   | Newburyport   | Single Culvert   | Off I 95                 |                | 2.2            | 2.2        |        |
| 608      | 296        | 26   | lpswich       | Single Culvert   | County Rd                |                | 2.2            | 2.2        |        |
| 652      | 297        | 29   | North Andover | Multiple Culvert | South Cross Road         | 0.0            | 2.2            | 2.2        |        |
| 979      | 298        | 25   | Rowley        | Single Culvert   | Wethersfield Street      | 0.0            | 2.2            | 2.2        |        |
| 1232     | 299        | 12   | Newburyport   | Single Culvert   | Newburyport bike path    |                | 2.1            | 2.1        |        |
| 1185     | 300        | 20   | Newbury       | Single Culvert   | Middle Road              | 0.0            | 2.1            | 2.1        |        |
| 1227     | 301        | 13   | Newburyport   | Single Culvert   | Hale Street              | 0.0            | 2.1            | 2.1        |        |
| 747      | 302        | 30   | North Andover | Single Culvert   | Hay Meadow Road          | 0.0            | 2.0            | 2.0        |        |
| 32       | 303        | 5    | Peabody       | Single Culvert   | Pine Street              | 0.0            | 2.0            | 2.0        |        |
| 989      | 304        | 26   | Rowley        | Single Culvert   | Hillside Street          | 0.0            | 2.0            | 2.0        | Yes    |
| 6316     | 305        | 15   | Middleton     | Single Culvert   | Ferncroft Golf Cart Path |                | 2.0            | 2.0        |        |
| 694      | 306        | 37   | Boxford       | Single Culvert   | Depot Road               | 0.6            | 1.4            | 2.0        |        |
| 432      | 307        | 38   | Boxford       | Single Culvert   | Wildmeadow Road          |                | 2.0            | 2.0        |        |
| 23       | 308        | 6    | Peabody       | Single Culvert   | Lake Street              |                | 2.0            | 2.0        |        |
| 589      | 309        | 27   | lpswich       | Multiple Culvert | Fellows Road             |                | 2.0            | 2.0        |        |
| 324      | 310        | 14   | Hamilton      | Single Culvert   | Linden Street            |                | 2.0            | 2.0        |        |
| 603      | 311        | 28   | lpswich       | Single Culvert   | County Rd                |                | 1.9            | 1.9        |        |
| 568      | 312        | 39   | Boxford       | Single Culvert   | I-95 SB                  |                | 1.9            | 1.9        |        |
| 659      | 313        | 31   | North Andover | Multiple Culvert | Salem Street             | 0.0            | 1.9            | 1.9        |        |
| 448      | 314        | 40   | Boxford       | Single Culvert   | Holmes Rd                | 0.0            | 1.9            | 1.9        |        |
| 897      | 315        | 27   | Rowley        | Single Culvert   | Mill Rd                  |                | 1.9            | 1.9        |        |

| IRWA     | Priority I | Rank |               |                  |                    | Pr             | iority Scoring |            |        |
|----------|------------|------|---------------|------------------|--------------------|----------------|----------------|------------|--------|
| Crossing |            |      |               |                  |                    | Infrastructure | Ecological     | Priority   |        |
| ID       | Region     | Town | Town          | Structure Type   | Road               | Risk (CRI)     | Impact (CEI)   | Score (CP) | Design |
| 502      | 316        | 26   | Topsfield     | Multiple Culvert | Howlett St         | 0.6            | 1.3            | 1.9        |        |
| 391      | 317        | 15   | Hamilton      | Single Culvert   | Sagamore Street    | 0.6            | 1.3            | 1.9        |        |
| 9012     | 318        | 29   | lpswich       | Single Culvert   | Off Road           |                | 1.9            | 1.9        |        |
| 451      | 319        | 41   | Boxford       | Single Culvert   | Middleton Road     |                | 1.9            | 1.9        |        |
| 433      | 320        | 27   | Topsfield     | Bridge           | South Main St      | 0.0            | 1.9            | 1.9        | Yes    |
| 252      | 321        | 15   | Wenham        | Single Culvert   | Larch Row          | 0.0            | 1.9            | 1.9        |        |
| 9004     | 322        | 42   | Boxford       | Multiple Culvert | Off_Lockwood Lane  |                | 1.9            | 1.9        |        |
| 49       | 323        | 10   | Wilmington    | Multiple Culvert | Canal Street       | 0.0            | 1.8            | 1.8        |        |
| 135      | 324        | 11   | Wilmington    | Bridge           | Salem Street/Rt 62 | 0.0            | 1.8            | 1.8        |        |
| 199      | 325        | 16   | Middleton     | Single Culvert   | Mount Vernon       | 0.0            | 1.8            | 1.8        |        |
| 74       | 326        | 12   | Wilmington    | Multiple Culvert | Shawsheen Avenue   | 0.0            | 1.8            | 1.8        |        |
| 17000    | 327        | 17   | Middleton     | Single Culvert   | Essex Street       |                | 1.8            | 1.8        |        |
| 1194     | 328        | 21   | Newbury       | Single Culvert   | Scotland Road      | 0.0            | 1.8            | 1.8        | Yes    |
| 852      | 329        | 20   | Georgetown    | Single Culvert   | Hiking Trail       |                | 1.8            | 1.8        |        |
| 674      | 330        | 32   | North Andover | Multiple Culvert | Foster Street      | 0.0            | 1.8            | 1.8        | Yes    |
| 980      | 331        | 28   | Rowley        | Culvert          | Weathersfield Road | -1.0           | 1.8            | 1.8        |        |
| 140      | 332        | 13   | Wilmington    | Single Culvert   | 1-93               |                | 1.8            | 1.8        |        |
| 372      | 333        | 16   | Hamilton      | Single Culvert   | Bay Road           |                | 1.8            | 1.8        |        |
| 9        | 334        | 14   | Wilmington    | Multiple Culvert | Chestnut Street    | 0.0            | 1.8            | 1.8        | Yes    |
| 942      | 335        | 21   | Georgetown    | Single Culvert   | West Street        | 0.0            | 1.8            | 1.8        |        |
| 327      | 336        | 17   | Hamilton      | Multiple Culvert | Howard Street      | 0.0            | 1.8            | 1.8        |        |
| 1099     | 337        | 22   | Newbury       | Single Culvert   | River Street       | 0.0            | 1.8            | 1.8        | Yes    |
| 658      | 338        | 28   | Topsfield     | Single Culvert   | East Street        | 0.0            | 1.7            | 1.7        | Yes    |
| 687      | 339        | 43   | Boxford       | Single Culvert   | Main Street        |                | 1.7            | 1.7        |        |
| 370      | 340        | 10   | Essex         | Single Culvert   | western ave        | 0.0            | 1.7            | 1.7        |        |
| 94       | 341        | 18   | Middleton     | Single Culvert   | Boston Street      |                | 1.7            | 1.7        |        |
| 715      | 342        | 33   | North Andover | Multiple Culvert | Foster Road        | 0.0            | 1.7            | 1.7        |        |
| 154      | 343        | 10   | North Reading | Single Culvert   | Lindor Road        | 0.0            | 1.7            | 1.7        |        |
| 169      | 344        | 15   | Wilmington    | Multiple Culvert | Route 125          | 0.0            | 1.7            | 1.7        |        |
| 83       | 345        | 16   | Wilmington    | Multiple Culvert | Wild Avenue        | 0.0            | 1.7            | 1.7        |        |
| 969      | 346        | 29   | Rowley        | Single Culvert   | Taylors Lane       |                | 1.7            | 1.7        |        |
| 263      | 347        | 19   | Middleton     | Single Culvert   | Lake Street        |                | 1.7            | 1.7        |        |
| 893      | 348        | 44   | Boxford       | Single Culvert   | Valley Road        | 0.0            | 1.7            | 1.7        |        |
| 864      | 349        | 22   | Georgetown    | Single Culvert   | Central Street     | 0.0            | 1.7            | 1.7        |        |
| 6276     | 350        | 6    | Danvers       | Culvert          | Route 1            | 0.0            | 1.7            | 1.7        |        |

| IRWA     | Priority I | Rank |               |                  |                              | Pr             | iority Scoring |            |        |
|----------|------------|------|---------------|------------------|------------------------------|----------------|----------------|------------|--------|
| Crossing |            |      |               |                  |                              | Infrastructure | Ecological     | Priority   |        |
| ID       | Region     | Town | Town          | Structure Type   | Road                         | Risk (CRI)     | Impact (CEI)   | Score (CP) | Design |
| 828      | 351        | 30   | lpswich       | Single Culvert   | High Street                  | 0.0            | 1.6            | 1.6        |        |
| 28       | 352        | 17   | Wilmington    | Multiple Culvert | Burlington Avenue            | 0.0            | 1.6            | 1.6        | Yes    |
| 657      | 353        | 31   | lpswich       | Single Culvert   | Off Heartbreak Road          |                | 1.6            | 1.6        |        |
| 309      | 354        | 18   | Hamilton      | Open Bottom Arch | Myopia Hunt Club access Road |                | 1.6            | 1.6        |        |
| 260      | 355        | 11   | Andover       | Multiple Culvert | Mohawk Road                  | 0.0            | 1.6            | 1.6        | Yes    |
| 511      | 356        | 45   | Boxford       | Single Culvert   | Middleton Road               | 0.0            | 1.6            | 1.6        | Yes    |
| 924      | 357        | 30   | Rowley        | Single Culvert   | Victory Lane                 | 0.0            | 1.6            | 1.6        |        |
| 33       | 358        | 7    | Peabody       | Single Culvert   | Pine Street                  | 0.0            | 1.6            | 1.6        |        |
| 290      | 359        | 12   | Andover       | Single Culvert   | Jenkins Road                 |                | 1.6            | 1.6        |        |
| 578      | 360        | 29   | Topsfield     | Bridge           | Ipswich Road                 | 1.2            | 0.4            | 1.6        |        |
| 1089     | 361        | 23   | Newbury       | Open Bottom Arch | Central Street               | 0.0            | 1.6            | 1.6        |        |
| 546      | 362        | 34   | North Andover | Single Culvert   | Rt 114/Turnpike Street       |                | 1.6            | 1.6        |        |
| 168      | 363        | 20   | Middleton     | Single Culvert   | Off_South Main Street        |                | 1.6            | 1.6        |        |
| 571      | 364        | 46   | Boxford       | Multiple Culvert | Townsend Farm Road           | 0.0            | 1.6            | 1.6        |        |
| 378      | 365        | 21   | Middleton     | Culvert          | Essex Street                 | 0.0            | 1.6            | 1.6        |        |
| 10110    | 366        | 5    | Salisbury     | Culvert          | Black Snake Road             | -1.0           | 1.6            | 1.6        |        |
| 478      | 367        | 35   | North Andover | Multiple Culvert | Salem Street                 |                | 1.5            | 1.5        |        |
| 423      | 368        | 30   | Topsfield     | Single Culvert   | Newburyport Turnpike         | 0.0            | 1.5            | 1.5        |        |
| 662      | 369        | 36   | North Andover | Single Culvert   | Abbott Street                |                | 1.5            | 1.5        |        |
| 500      | 370        | 31   | Topsfield     | Single Culvert   | Perkins Row                  | 0.0            | 1.5            | 1.5        | Yes    |
| 592      | 371        | 47   | Boxford       | Single Culvert   | Towne Road                   | 0.0            | 1.5            | 1.5        |        |
| 646      | 372        | 37   | North Andover | Multiple Culvert | Holly Ridge Road             | 0.6            | 0.9            | 1.5        |        |
| 31       | 373        | 8    | Peabody       | Single Culvert   | Pine Brook Lane              |                | 1.5            | 1.5        |        |
| 673      | 374        | 32   | lpswich       | Single Culvert   | Linebrook Road               |                | 1.5            | 1.5        |        |
| 883      | 375        | 31   | Rowley        | Single Culvert   | Haverhill St                 | 0.0            | 1.5            | 1.5        |        |
| 325      | 376        | 38   | North Andover | Bridge           | Stearns Pond Road            | 0.0            | 1.5            | 1.5        |        |
| 975      | 377        | 32   | Rowley        | Single Culvert   | Central St                   |                | 1.5            | 1.5        |        |
| 588      | 378        | 48   | Boxford       | Single Culvert   | Townsend Farm Road           | 0.6            | 0.9            | 1.5        |        |
| 797      | 379        | 33   | lpswich       | Multiple Culvert | Mile Lane                    | 0.6            | 0.9            | 1.5        |        |
| 128      | 380        | 11   | North Reading | Multiple Culvert | Elm Street                   | 0.0            | 1.5            | 1.5        |        |
| 789      | 381        | 33   | Rowley        | Multiple Culvert | Cindy Lane                   | 0.0            | 1.4            | 1.4        |        |
| 379      | 382        | 11   | Essex         | Single Culvert   | County Rd                    | 0.0            | 1.4            | 1.4        |        |
| 677      | 383        | 49   | Boxford       | Single Culvert   | I-95 NB                      |                | 1.4            | 1.4        |        |
| 763      | 384        | 50   | Boxford       | Multiple Culvert | Stiles Pond Road             | 0.0            | 1.4            | 1.4        |        |
| 752      | 385        | 51   | Boxford       |                  | Batchelder Road              | 0.0            | 1.4            | 1.4        |        |

| IRWA     | Priority F | Rank |               |                  |                               | Pr             | iority Scoring | ·          |        |
|----------|------------|------|---------------|------------------|-------------------------------|----------------|----------------|------------|--------|
| Crossing | -          |      |               |                  |                               | Infrastructure | Ecological     | Priority   |        |
| ID       | Region     | Town | Town          | Structure Type   | Road                          | Risk (CRI)     | Impact (CEI)   | Score (CP) | Design |
| 9002     | 386        | 52   | Boxford       | Open Bottom Arch | Andrew's Farm Road            | 0.6            | 0.8            | 1.4        |        |
| 976      | 387        | 34   | Rowley        | Single Culvert   | Newburyport Turnpike          | 0.0            | 1.4            | 1.4        |        |
| 207      | 388        | 7    | Danvers       | Single Culvert   | Us 1 I95 Interchange          |                | 1.4            | 1.4        |        |
| 7133     | 389        | 23   | Georgetown    | Culvert          | JAckman Road                  | 0.0            | 1.4            | 1.4        |        |
| 730      | 390        | 53   | Boxford       | Single Culvert   | Service Road off Pond Street  | 0.0            | 1.4            | 1.4        |        |
| 958      | 391        | 24   | Georgetown    | Bridge           | East Main Street              | 0.0            | 1.4            | 1.4        |        |
| 9007     | 392        | 54   | Boxford       | Single Culvert   | Off_Georgetown Road           |                | 1.4            | 1.4        |        |
| 428      | 393        | 32   | Topsfield     | Single Culvert   | Topsfield Linear Common       | 0.0            | 1.4            | 1.4        |        |
| 726      | 394        | 39   | North Andover | Single Culvert   | Haymeadow Road                | 0.0            | 1.3            | 1.3        |        |
| 427      | 395        | 40   | North Andover | Single Culvert   | Berry Street                  | 0.0            | 1.3            | 1.3        |        |
| 251      | 396        | 33   | Topsfield     | Multiple Culvert | I-95 NB                       |                | 1.3            | 1.3        |        |
| 293      | 397        | 13   | Andover       | Single Culvert   | Harold Parker Campground Road |                | 1.3            | 1.3        |        |
| 223      | 398        | 8    | Danvers       | Multiple Culvert | Old North Street              | 0.0            | 1.3            | 1.3        |        |
| 956      | 399        | 25   | Georgetown    | Bridge           | Penn Brook Avenue             | 0.0            | 1.3            | 1.3        |        |
| 460      | 400        | 41   | North Andover | Single Culvert   | Stiles Street                 |                | 1.3            | 1.3        |        |
| 215      | 401        | 22   | Middleton     | Multiple Culvert | Lake Street                   | 0.0            | 1.3            | 1.3        |        |
| 617      | 402        | 34   | Topsfield     | Single Culvert   | East Street                   |                | 1.3            | 1.3        |        |
| 720      | 403        | 55   | Boxford       | Multiple Culvert | Main Street                   | 0.0            | 1.3            | 1.3        | Yes    |
| 116      | 404        | 12   | North Reading | Multiple Culvert | Winter Street/Rt 62           | 0.0            | 1.3            | 1.3        |        |
| 7156     | 405        | 24   | Newbury       | Multiple Culvert | Elm Street                    |                | 1.3            | 1.3        | No     |
| 537      | 406        | 35   | Topsfield     | Multiple Culvert | Ipswich Rd                    | 0.0            | 1.3            | 1.3        | Yes    |
| 593      | 407        | 36   | Topsfield     | Multiple Culvert | Aaron Drive                   |                | 1.3            | 1.3        |        |
| 974      | 408        | 35   | Rowley        | Bridge           | Wethersfield Street           | 0.0            | 1.3            | 1.3        |        |
| 212      | 409        | 23   | Middleton     | Single Culvert   | Pleasant Street               | 0.0            | 1.3            | 1.3        |        |
| 698      | 410        | 34   | lpswich       | Multiple Culvert | Peabody Street                |                | 1.3            | 1.3        |        |
| 98       | 411        | 24   | Middleton     | Single Culvert   | Boston Road                   |                | 1.3            | 1.3        |        |
| 10106    | 412        | 6    | Salisbury     | Culvert          | Beach Road                    | -1.0           | 1.3            | 1.3        |        |
| 374      | 413        | 14   | Andover       | Multiple Culvert | Salem Street                  | 0.0            | 1.3            | 1.3        | Yes    |
| 103      | 414        | 13   | North Reading | Bridge           | Southwick Road                | 0.0            | 1.3            | 1.3        |        |
| 398      | 415        | 19   | Hamilton      | Single Culvert   | Asbury Street                 | 0.0            | 1.2            | 1.2        |        |
| 445      | 416        | 42   | North Andover | Single Culvert   | Turnpike Street/ Route 114    |                | 1.2            | 1.2        |        |
| 401      | 417        | 15   | Andover       | Single Culvert   | Andover Bypass                |                | 1.2            | 1.2        |        |
| 770      | 418        | 43   | North Andover | Multiple Culvert | Winter Street                 | 0.0            | 1.2            | 1.2        |        |
| 384      | 419        | 20   | Hamilton      | Single Culvert   | Blueberry Lane                | 0.0            | 1.2            | 1.2        |        |
| 490      | 420        | 56   | Boxford       |                  | Middleton Road                |                | 1.2            | 1.2        |        |

| IRWA     | Priority I | Rank |               |                  |                         | Pr             | Priority Scoring |            |        |
|----------|------------|------|---------------|------------------|-------------------------|----------------|------------------|------------|--------|
| Crossing |            |      |               |                  |                         | Infrastructure | Ecological       | Priority   |        |
| ١D       | Region     | Town | Town          | Structure Type   | Road                    | Risk (CRI)     | Impact (CEI)     | Score (CP) | Design |
| 699      | 421        | 44   | North Andover | Single Culvert   | Lost Pond Lane          | 0.0            | 1.2              | 1.2        |        |
| 76       | 422        | 2    | Reading       | Open Bottom Arch | Haverhill Street        | 0.0            | 1.2              | 1.2        | Yes    |
| 192      | 423        | 9    | Danvers       | Multiple Culvert | I-95 NB                 |                | 1.2              | 1.2        |        |
| 373      | 424        | 12   | Essex         | Single Culvert   | Essex Park Road         | 0.0            | 1.2              | 1.2        |        |
| 454      | 425        | 37   | Topsfield     | Single Culvert   | Fox Run Extension       |                | 1.2              | 1.2        |        |
| 318      | 426        | 25   | Middleton     | Bridge           | Essex Street            | 0.0            | 1.2              | 1.2        |        |
| 259      | 427        | 38   | Topsfield     | Bridge           | Rowley Bridge Road      |                | 1.2              | 1.2        |        |
| 615      | 428        | 39   | Topsfield     | Culvert          | North Street            |                | 1.2              | 1.2        | Yes    |
| 718      | 429        | 57   | Boxford       | Single Culvert   | Ipswich Road            |                | 1.2              | 1.2        |        |
| 641      | 430        | 58   | Boxford       | Bridge           | Brookview Road          |                | 1.1              | 1.1        |        |
| 703      | 431        | 35   | lpswich       | Single Culvert   | Heard Drive             |                | 1.1              | 1.1        |        |
| 248      | 432        | 14   | North Reading | Single Culvert   | Marblehead Street       | 0.0            | 1.1              | 1.1        |        |
| 231      | 433        | 16   | Wenham        | Single Culvert   | Grapevine Road          | 0.0            | 1.1              | 1.1        |        |
| 514      | 434        | 21   | Hamilton      | Culvert          | Gardner Street          | 0.0            | 1.1              | 1.1        |        |
| 1104     | 435        | 4    | Groveland     | Ford             | J B Little Road         |                | 1.1              | 1.1        |        |
| 539      | 436        | 36   | lpswich       | Multiple Culvert | unnamed                 | 0.0            | 1.1              | 1.1        |        |
| 524      | 437        | 37   | lpswich       | Single Culvert   | Route 1A                | 0.0            | 1.1              | 1.1        |        |
| 1159     | 438        | 7    | West Newbury  | Open Bottom Arch | Middle Street           | 0.0            | 1.1              | 1.1        |        |
| 377      | 439        | 22   | Hamilton      | Single Culvert   | Juniper Road            | 0.0            | 1.1              | 1.1        |        |
| 1178     | 440        | 25   | Newbury       | Single Culvert   | Boston Road             | 0.0            | 1.1              | 1.1        |        |
| 165      | 441        | 6    | Beverly       | Open Bottom Arch | Dodge St                | 0.0            | 1.1              | 1.1        |        |
| 9034     | 442        | 59   | Boxford       | Bridge           | Off_Topsfield Road      |                | 1.1              | 1.1        |        |
| 721      | 443        | 60   | Boxford       | Bridge           | Georgetown Road         | 0.0            | 1.1              | 1.1        |        |
| 900      | 444        | 36   | Rowley        | Single Culvert   | Haverhill Street        | 0.0            | 1.1              | 1.1        |        |
| 1015     | 445        | 26   | Georgetown    | Bridge           | Off_WEST MAIN STREET    | 0.0            | 1.1              | 1.1        |        |
| 9015     | 446        | 5    | Groveland     | Bridge           | JB Little Road          | 0.6            | 0.4              | 1.0        |        |
| 480      | 447        | 23   | Hamilton      | Single Culvert   | Bay Road                |                | 1.0              | 1.0        |        |
| 4        | 448        | 1    | Burlington    | Multiple Culvert | Freeport Road           | 0.0            | 1.0              | 1.0        |        |
| 947      | 449        | 27   | Georgetown    | Bridge           | EAST MAIN STREET        | 0.6            | 0.4              | 1.0        |        |
| 665      | 450        | 40   | Topsfield     | Single Culvert   | Haverhill ROad          | 0.0            | 1.0              | 1.0        |        |
| 107      | 451        | 26   | Middleton     | Single Culvert   | Natsue Way              | 0.0            | 1.0              | 1.0        |        |
| 542      | 452        | 45   | North Andover | Single Culvert   | Rt 114/ Turnpike Street |                | 1.0              | 1.0        |        |
| 695      | 453        | 38   | lpswich       | Single Culvert   | Plains Road             |                | 1.0              | 1.0        |        |
| 113      | 454        | 15   | North Reading | Bridge           | Central Street          | 0.0            | 1.0              | 1.0        |        |
| 34       | 455        | 9    | Peabody       | Single Culvert   | Off_Pine Street         | 0.0            | 1.0              | 1.0        |        |

| IRWA     | Priority F | Rank |               |                  |                              | Pr             | iority Scoring |            |        |
|----------|------------|------|---------------|------------------|------------------------------|----------------|----------------|------------|--------|
| Crossing |            |      |               |                  |                              | Infrastructure | Ecological     | Priority   |        |
| ID       | Region     | Town | Town          | Structure Type   | Road                         | Risk (CRI)     | Impact (CEI)   | Score (CP) | Design |
| 419      | 456        | 41   | Topsfield     | Bridge           | Washington Street            |                | 1.0            | 1.0        |        |
| 146      | 457        | 18   | Wilmington    | Multiple Culvert | Andover Street               | 0.0            | 1.0            | 1.0        |        |
| 6        | 458        | 2    | Burlington    | Single Culvert   | Mill Street                  | 0.0            | 1.0            | 1.0        |        |
| 59       | 459        | 3    | Reading       | Multiple Culvert | Eastway                      | 0.0            | 1.0            | 1.0        |        |
| 845      | 460        | 61   | Boxford       | Single Culvert   | Anna's Way                   | 0.0            | 1.0            | 1.0        |        |
| 1007     | 461        | 28   | Georgetown    | Bridge           | Mill Street                  | 0.0            | 0.9            | 0.9        |        |
| 346      | 462        | 27   | Middleton     | Single Culvert   | Mill Street                  | 0.0            | 0.9            | 0.9        |        |
| 679      | 463        | 62   | Boxford       | Multiple Culvert | Pye Brook Lane               | 0.0            | 0.9            | 0.9        | Yes    |
| 9021     | 464        | 16   | North Reading | Bridge           | Salem and Lowell Railroad    | 0.0            | 0.9            | 0.9        |        |
| 352      | 465        | 28   | Middleton     | Multiple Culvert | North Libery Street          | 0.0            | 0.9            | 0.9        |        |
| 624      | 466        | 63   | Boxford       | Multiple Culvert | Towne Road                   | 0.0            | 0.9            | 0.9        |        |
| 348      | 467        | 24   | Hamilton      | Single Culvert   | Bridge Street                | 0.0            | 0.9            | 0.9        |        |
| 10102    | 468        | 7    | Salisbury     | Culvert          | bike path                    | 0.0            | 0.9            | 0.9        |        |
| 6610     | 469        | 39   | lpswich       | Culvert          | Chebacco Road                |                | 0.9            | 0.9        | Yes    |
| 576      | 470        | 46   | North Andover | Multiple Culvert | Willow Street                | 0.0            | 0.9            | 0.9        |        |
| 736      | 471        | 64   | Boxford       | Bridge           | Service Road off Pond Street | 0.0            | 0.9            | 0.9        |        |
| 450      | 472        | 42   | Topsfield     | Multiple Culvert | Central Street               |                | 0.9            | 0.9        |        |
| 732      | 473        | 65   | Boxford       | Single Culvert   | I-95 NB                      |                | 0.9            | 0.9        |        |
| 597      | 474        | 66   | Boxford       | Bridge           | Middleton Road               |                | 0.8            | 0.8        |        |
| 233      | 475        | 17   | Wenham        | Multiple Culvert | Grapevine Road               | 0.0            | 0.8            | 0.8        | Yes    |
| 447      | 476        | 43   | Topsfield     | Bridge           | River Road                   |                | 0.8            | 0.8        |        |
| 171      | 477        | 17   | North Reading | Bridge           | Darrel Drive                 | 0.6            | 0.2            | 0.8        |        |
| 284      | 478        | 18   | Wenham        | Bridge           | Walnut Street                | 0.0            | 0.8            | 0.8        |        |
| 409      | 479        | 67   | Boxford       | Single Culvert   | Interstate 95                |                | 0.8            | 0.8        |        |
| 499      | 480        | 68   | Boxford       | Multiple Culvert | Lockwood Lane                | 0.0            | 0.8            | 0.8        |        |
| 7160     | 481        | 26   | Newbury       | Bridge           | Parish Road                  | 0.0            | 0.8            | 0.8        |        |
| 551      | 482        | 40   | lpswich       | Single Culvert   | Off Route 1A                 |                | 0.8            | 0.8        |        |
| 696      | 483        | 41   | lpswich       | Single Culvert   | Safford Street               |                | 0.8            | 0.8        |        |
| 9041     | 484        | 19   | Wenham        | Multiple Culvert | Topsfield Nature Trail       | 0.0            | 0.8            | 0.8        |        |
| 773      | 485        | 42   | lpswich       | Single Culvert   | Linebrook Road               | 0.0            | 0.8            | 0.8        |        |
| 1067     | 486        | 29   | Georgetown    | Bridge           | Thurlow Street               | 0.0            | 0.8            | 0.8        |        |
| 9051     | 487        | 47   | North Andover | Bridge           | Off Blue Ridge Road          |                | 0.8            | 0.8        |        |
| 36       | 488        | 19   | Wilmington    | Single Culvert   | I-93 SB                      |                | 0.8            | 0.8        |        |
| 55       | 489        | 20   | Wilmington    | Bridge           | Main Street/Route 38         | 0.0            | 0.8            | 0.8        | Yes    |
| 206      | 490        | 20   | Wenham        | Bridge           | Essex Street                 | 0.0            | 0.7            | 0.7        |        |

| IRWA     | Priority I | Rank |               |                  |                         | Priority Scoring |              |            |        |
|----------|------------|------|---------------|------------------|-------------------------|------------------|--------------|------------|--------|
| Crossing |            |      |               |                  |                         | Infrastructure   | Ecological   | Priority   |        |
| ID       | Region     | Town | Town          | Structure Type   | Road                    | Risk (CRI)       | Impact (CEI) | Score (CP) | Design |
| 488      | 491        | 48   | North Andover | Bridge           | Off_Salem Street        |                  | 0.7          | 0.7        |        |
| 152      | 492        | 18   | North Reading | Multiple Culvert | Country Club Road       | 0.0              | 0.7          | 0.7        |        |
| 320      | 493        | 21   | Wenham        | Single Culvert   | Topsfield Linear common | 0.0              | 0.7          | 0.7        |        |
| 544      | 494        | 49   | North Andover | Bridge           | Hawkins Lane            | 0.0              | 0.7          | 0.7        |        |
| 145      | 495        | 19   | North Reading | Open Bottom Arch | Duane Drive             | 0.6              | 0.1          | 0.7        |        |
| 717      | 496        | 43   | lpswich       | Bridge           | Pine Swamp Rd           | 0.6              | 0.1          | 0.7        |        |
| 988      | 497        | 30   | Georgetown    | Single Culvert   | Farnham Road            | 0.0              | 0.7          | 0.7        |        |
| 301      | 498        | 25   | Hamilton      | Single Culvert   | Miles River Road        |                  | 0.7          | 0.7        |        |
| 10105    | 499        | 8    | Salisbury     | Culvert          | Beach Road              | -1.0             | 0.7          | 0.7        |        |
| 583      | 500        | 44   | Topsfield     | Bridge           | Unnamed Path            |                  | 0.7          | 0.7        |        |
| 429      | 501        | 50   | North Andover | Multiple Culvert | Sharpners Pond Rd       | 0.0              | 0.7          | 0.7        |        |
| 606      | 502        | 45   | Topsfield     | Single Culvert   | Off_Timber Lane         |                  | 0.7          | 0.7        |        |
| 180      | 503        | 20   | North Reading | Multiple Culvert | Burrough Road           | 0.0              | 0.7          | 0.7        |        |
| 590      | 504        | 44   | lpswich       | Bridge           | Off_Winthrop Street     | 0.0              | 0.7          | 0.7        |        |
| 27       | 505        | 10   | Peabody       | Bridge           | Winona Street           | 0.0              | 0.7          | 0.7        |        |
| 334      | 506        | 26   | Hamilton      | Bridge           | Bridge Street           |                  | 0.7          | 0.7        |        |
| 105      | 507        | 21   | North Reading | Multiple Culvert | Chestnut Street         | 0.0              | 0.7          | 0.7        |        |
| 609      | 508        | 45   | lpswich       | Bridge           | Willowdale Road         |                  | 0.7          | 0.7        |        |
| 224      | 509        | 22   | Wenham        | Open Bottom Arch | Main St                 |                  | 0.7          | 0.7        |        |
| 562      | 510        | 46   | Topsfield     | Bridge           | Asbury Street           | 0.0              | 0.6          | 0.6        |        |
| 79       | 511        | 21   | Wilmington    | Multiple Culvert | Concord Street          | 0.0              | 0.6          | 0.6        |        |
| 1105     | 512        | 27   | Newbury       | Bridge           | Main Street             | 0.0              | 0.6          | 0.6        |        |
| 10113    | 513        | 9    | Salisbury     | Bridge           | Lafayette Road (Rt 1)   | 0.0              | 0.6          | 0.6        |        |
| 361      | 514        | 13   | Essex         | Open Bottom Arch | Harry Homans Drive      | 0.0              | 0.6          | 0.6        | Yes    |
| 839      | 515        | 46   | lpswich       | Bridge           | High Street             | 0.0              | 0.6          | 0.6        |        |
| 688      | 516        | 69   | Boxford       | Single Culvert   | I-95 NB                 |                  | 0.6          | 0.6        |        |
| 702      | 517        | 47   | lpswich       | Bridge           | Kimball Street          | 0.0              | 0.6          | 0.6        |        |
| 654      | 518        | 51   | North Andover | Single Culvert   | Boxford Street          |                  | 0.6          | 0.6        |        |
| 981      | 519        | 37   | Rowley        | Bridge           | Wethersfield Street     | 0.0              | 0.6          | 0.6        |        |
| 831      | 520        | 70   | Boxford       | Single Culvert   | Georgetown Road         | 0.0              | 0.6          | 0.6        |        |
| 237      | 521        | 23   | Wenham        | Open Bottom Arch | Dodges Rowe             | 0.0              | 0.6          | 0.6        |        |
| 1012     | 522        | 31   | Georgetown    | Single Culvert   | West Main Street        | 0.0              | 0.6          | 0.6        |        |
| 442      | 523        | 27   | Hamilton      |                  | Moulton Street          | 0.0              | 0.6          | 0.6        |        |
| 457      | 524        | 71   | Boxford       |                  | I-95 SB                 |                  | 0.6          | 0.6        |        |
| 692      | 525        | 72   | Boxford       | Open Bottom Arch | I-95 NB                 | 0.0              | 0.6          | 0.6        |        |

| IRWA     | Priority I | Rank |               |                  |                           | Pr             | iority Scoring | ,          |        |
|----------|------------|------|---------------|------------------|---------------------------|----------------|----------------|------------|--------|
| Crossing |            |      |               |                  |                           | Infrastructure | Ecological     | Priority   |        |
| ID       | Region     | Town | Town          | Structure Type   | Road                      | Risk (CRI)     | Impact (CEI)   | Score (CP) | Design |
| 10115    | 526        | 10   | Salisbury     | Bridge           | Gerrish Road              | -1.0           | 0.6            | 0.6        |        |
| 501      | 527        | 73   | Boxford       | Bridge           | Lockwood Lane             | 0.0            | 0.6            | 0.6        |        |
| 18       | 528        | 22   | Wilmington    | Bridge           | Main Street/Route 38      | 0.0            | 0.6            | 0.6        | Yes    |
| 22       | 529        | 23   | Wilmington    | Bridge           | Lowell Street             | 0.0            | 0.5            | 0.5        |        |
| 364      | 530        | 14   | Essex         | Open Bottom Arch | Western ave               |                | 0.5            | 0.5        |        |
| 71       | 531        | 11   | Peabody       | Bridge           | Russell Street            | 0.0            | 0.5            | 0.5        |        |
| 253      | 532        | 24   | Wenham        | Bridge           | Larch Row                 | 0.0            | 0.5            | 0.5        |        |
| 957      | 533        | 38   | Rowley        | Bridge           | Dodge St                  | 0.0            | 0.5            | 0.5        |        |
| 937      | 534        | 39   | Rowley        | Multiple Culvert | Turcotte Drive            | 0.0            | 0.5            | 0.5        |        |
| 1139     | 535        | 28   | Newbury       | Ford             | WMA power line and trail  |                | 0.5            | 0.5        |        |
| 53       | 536        | 12   | Peabody       | Bridge           | Lowell Street             | 0.0            | 0.5            | 0.5        |        |
| 120      | 537        | 22   | North Reading | Bridge           | Washington Street         | 0.0            | 0.5            | 0.5        |        |
| 889      | 538        | 40   | Rowley        | Open Bottom Arch | Powerhouse Lane           |                | 0.5            | 0.5        |        |
| 961      | 539        | 32   | Georgetown    | Bridge           | West Street               | 0.0            | 0.5            | 0.5        |        |
| 506      | 540        | 47   | Topsfield     | Open Bottom Arch | Perkins Row               | 0.0            | 0.5            | 0.5        |        |
| 536      | 541        | 48   | Topsfield     | Bridge           | Newburyport Turnpike      | 0.0            | 0.5            | 0.5        | Yes    |
| 121      | 542        | 23   | North Reading | Bridge           | Route 28, Main Street     | 0.0            | 0.5            | 0.5        |        |
| 623      | 543        | 48   | lpswich       | Bridge           | unnamed                   | 0.0            | 0.5            | 0.5        |        |
| 830      | 544        | 74   | Boxford       | Bridge           | Great Pond Ave            | 0.0            | 0.5            | 0.5        |        |
| 1016     | 545        | 33   | Georgetown    | Bridge           | Off North Street          | 0.0            | 0.4            | 0.4        |        |
| 601      | 546        | 49   | lpswich       | Bridge           | Route 1A                  | 0.0            | 0.4            | 0.4        |        |
| 62       | 547        | 24   | Wilmington    | Bridge           | Church Street             | 0.0            | 0.4            | 0.4        |        |
| 996      | 548        | 34   | Georgetown    | Bridge           | Bailey Lane               | 0.0            | 0.4            | 0.4        |        |
| 175      | 549        | 7    | Beverly       | Open Bottom Arch | Morgan's Island Rd        | 0.0            | 0.4            | 0.4        |        |
| 245      | 550        | 24   | North Reading | Bridge           | Route 28/Main Street      | 0.0            | 0.4            | 0.4        |        |
| 303      | 551        | 16   | Andover       | Bridge           | Harold Parker Road        | 0.0            | 0.4            | 0.4        |        |
| 155      | 552        | 8    | Beverly       | Multiple Culvert | Fern Street               | 0.0            | 0.4            | 0.4        |        |
| 10101    | 553        | 11   | Salisbury     | Bridge           | Steven                    | 0.0            | 0.4            | 0.4        |        |
| 1176     | 554        | 29   | Newbury       | Bridge           | Off_Highfield Road        |                | 0.4            | 0.4        |        |
| 336      | 555        | 29   | Middleton     | Bridge           | Peabody Street            |                | 0.3            | 0.3        |        |
| 529      | 556        | 52   | North Andover | Single Culvert   | Route 114/Turnpike Street | 0.0            | 0.3            | 0.3        |        |
| 6736     | 557        | 50   | lpswich       | Bridge           | Off-Road                  | 0.0            | 0.3            | 0.3        |        |
| 986      | 558        | 35   | Georgetown    | Bridge           | Summer Street             | 0.0            | 0.3            | 0.3        |        |
| 359      | 559        | 15   | Essex         | Bridge           | Pond Street               | 0.0            | 0.3            | 0.3        |        |
| 93       | 560        | 25   | Wilmington    | Multiple Culvert | Middlesex Avenue          | 0.0            | 0.3            | 0.3        |        |

| IRWA     | Priority I | Rank |               |                  |                             | Pr             | iority Scoring | ,          |        |
|----------|------------|------|---------------|------------------|-----------------------------|----------------|----------------|------------|--------|
| Crossing |            |      |               |                  |                             | Infrastructure | Ecological     | Priority   |        |
| ID       | Region     | Town | Town          | Structure Type   | Road                        | Risk (CRI)     | Impact (CEI)   | Score (CP) | Design |
| 104      | 561        | 25   | North Reading | Bridge           | Park Street                 | 0.0            | 0.3            | 0.3        |        |
| 992      | 562        | 36   | Georgetown    | Bridge           | North Street                | 0.0            | 0.3            | 0.3        |        |
| 966      | 563        | 37   | Georgetown    | Single Culvert   | Winter Street               | 0.0            | 0.3            | 0.3        |        |
| 9030     | 564        | 41   | Rowley        | Bridge           | Off_Boxford Road            | 0.0            | 0.3            | 0.3        |        |
| 65       | 565        | 26   | Wilmington    | Bridge           | Wildwood Street             | 0.0            | 0.3            | 0.3        | Yes    |
| 61       | 566        | 27   | Wilmington    | Open Bottom Arch | Federal Street              | 0.0            | 0.3            | 0.3        | No     |
| 666      | 567        | 53   | North Andover | Multiple Culvert | Blue Ridge Road             |                | 0.3            | 0.3        |        |
| 70       | 568        | 28   | Wilmington    | Multiple Culvert | Woburn Street               | 0.0            | 0.3            | 0.3        |        |
| 1014     | 569        | 42   | Rowley        | Bridge           | Fenno Drive                 | 0.0            | 0.3            | 0.3        |        |
| 1006     | 570        | 38   | Georgetown    | Bridge           | Mill Street                 | 0.0            | 0.3            | 0.3        |        |
| 9001     | 571        | 51   | lpswich       | Bridge           | Unnamed Road                | 0.0            | 0.3            | 0.3        |        |
| 221      | 572        | 30   | Middleton     | Bridge           | Maple Street                | 0.0            | 0.3            | 0.3        |        |
| 337      | 573        | 54   | North Andover | Bridge           | Off_Harold Parker Road      |                | 0.3            | 0.3        |        |
| 64       | 574        | 29   | Wilmington    | Single Culvert   | I-93                        |                | 0.3            | 0.3        |        |
| 67       | 575        | 30   | Wilmington    | Bridge           | Middlesex Avenue            | 0.0            | 0.2            | 0.2        |        |
| 367      | 576        | 49   | Topsfield     | Bridge           | Railroad                    |                | 0.2            | 0.2        |        |
| 685      | 577        | 75   | Boxford       | Bridge           | Power Lines East of I-95 NB |                | 0.2            | 0.2        |        |
| 88       | 578        | 31   | Wilmington    | Bridge           | Main Street/Route 38        | 0.0            | 0.2            | 0.2        |        |
| 10114    | 579        | 12   | Salisbury     | Bridge           | unnamed                     | 0.0            | 0.2            | 0.2        |        |
| 297      | 580        | 25   | Wenham        | Open Bottom Arch | Topsfield Road              | 0.0            | 0.2            | 0.2        |        |
| 118      | 581        | 10   | Danvers       | Bridge           | Andover Street Route 114    | 0.0            | 0.2            | 0.2        |        |
| 475      | 582        | 76   | Boxford       | Ford             | Off_Middleton Road          |                | 0.2            | 0.2        |        |
| 390      | 583        | 16   | Essex         | Open Bottom Arch | Apple Street                | 0.0            | 0.2            | 0.2        |        |
| 452      | 584        | 55   | North Andover | Open Bottom Arch | Colonial Avenue             | 0.0            | 0.2            | 0.2        |        |
| 1086     | 585        | 30   | Newbury       | Bridge           | Larkin Street               | 0.0            | 0.2            | 0.2        |        |
| 582      | 586        | 50   | Topsfield     | Bridge           | Bradley Palmer Trail        |                | 0.2            | 0.2        |        |
| 1025     | 587        | 39   | Georgetown    | Bridge           | Hazan Court                 | 0.0            | 0.2            | 0.2        |        |
| 9049     | 588        | 28   | Hamilton      | Bridge           | Off_Highland Street         |                | 0.1            | 0.1        |        |
| 865      | 589        | 77   | Boxford       | Single Culvert   | Main Street                 | 0.0            | 0.1            | 0.1        |        |
| 182      | 590        | 26   | North Reading | Bridge           | Barbie Lane                 | 0.0            | 0.1            | 0.1        |        |
| 97       | 591        | 13   | Peabody       | Bridge           | Boston Street               | 0.0            | 0.1            | 0.1        |        |
| 899      | 592        | 43   | Rowley        | Bridge           | Mill Rd                     | 0.0            | 0.1            | 0.1        |        |
| 689      | 593        | 56   | North Andover | Bridge           | Ogunquit Road               |                | 0.1            | 0.1        |        |
| 365      | 594        | 51   | Topsfield     | Bridge           | Route 97                    | 0.0            | 0.1            | 0.1        |        |
| 515      | 595        | 57   | North Andover | Open Bottom Arch | Pheasant Brook Road         | 0.0            | 0.1            | 0.1        |        |

Great Marsh Barriers Assessment

Appendix 4 – Full Results Tables

| IRWA     | Priority | Rank |               |                  |                              | Pr             | iority Scoring | ·          |        |
|----------|----------|------|---------------|------------------|------------------------------|----------------|----------------|------------|--------|
| Crossing |          |      |               |                  |                              | Infrastructure | Ecological     | Priority   |        |
| ID       | Region   | Town | Town          | Structure Type   | Road                         | Risk (CRI)     | Impact (CEI)   | Score (CP) | Design |
| 383      | 596      | 17   | Essex         | Bridge           | Off_Park Road                | 0.0            | 0.1            | 0.1        |        |
| 9013     | 597      | 52   | lpswich       | Bridge           | Off Topsfield Road           |                | 0.1            | 0.1        |        |
| 381      | 598      | 52   | Topsfield     | Bridge           | Salem Road                   | 0.0            | 0.1            | 0.1        |        |
| 127      | 599      | 27   | North Reading | Bridge           | Washington Street            | 0.0            | 0.1            | 0.1        |        |
| 471      | 600      | 78   | Boxford       | Bridge           | I-95 NB                      |                | 0.1            | 0.1        |        |
| 473      | 601      | 79   | Boxford       | Bridge           | I-95 SB                      |                | 0.0            | 0.0        |        |
| 395      | 602      | 53   | Topsfield     | Bridge           | Rowley Bridge RD             | 0.0            | 0.0            | 0.0        |        |
| 114      | 603      | 28   | North Reading | Bridge           | Haverhill Street             | 0.0            | 0.0            | 0.0        |        |
| 357      | 604      | 80   | Boxford       | Bridge           | Interstate 95                |                | 0.0            | 0.0        |        |
| 356      | 605      | 81   | Boxford       | Bridge           | Interstate 95                |                | 0.0            | 0.0        |        |
| 375      | 606      | 54   | Topsfield     | Open Bottom Arch | Newburyport Turnpike (Rt. 1) |                | 0.0            | 0.0        |        |
| 600      | 607      | 53   | lpswich       | Open Bottom Arch | Mill Road                    |                | 0.0            | 0.0        |        |
| 82       | 608      | 4    | Reading       | Bridge           | Mill Street                  | 0.0            | 0.0            | 0.0        |        |
| 269      | 609      | 31   | Middleton     | Bridge           | North Main Street            | 0.0            | 0.0            | 0.0        |        |
| 89       | 610      | 29   | North Reading | Bridge           | Main Street/Rt. 28           | 0.0            | 0.0            | 0.0        |        |
| 575      | 611      | 82   | Boxford       | Bridge           | Mill Road                    | 0.0            | 0.0            | 0.0        |        |

## Tidal Crossings

|                        |                      |                    |                                            |               | Great             | Marsh Plan                       |                                |
|------------------------|----------------------|--------------------|--------------------------------------------|---------------|-------------------|----------------------------------|--------------------------------|
| IRWA<br>Crossing<br>ID | Crossing<br>Priority | Town               | Road/Site                                  | Public<br>Way | Priority<br>Marsh | Rapid<br>Technical<br>Assessment | Design<br>or Local<br>Priority |
| 17107                  | High                 | Essex              | Route 133                                  | Yes           | Medium            |                                  |                                |
| 17108                  | High                 | Essex              | Old Essex Road                             | Yes           | Medium            |                                  |                                |
| 17109                  | High                 | Essex              | Behind Town Hall                           | No            | High              |                                  |                                |
| 6864                   | High                 | lpswich            | Labor in Vain Road                         | Yes           | Medium            | Yes                              |                                |
| 660                    | High                 | lpswich            | Argilla Road                               | Yes           | Medium            | Yes                              |                                |
| 17240                  | High                 | lpswich            | MBTA                                       | Yes           | Medium            |                                  |                                |
| 17241                  | High                 | lpswich            | MBTA                                       | Yes           | Medium            |                                  |                                |
| 17242                  | High                 | lpswich            | Town Farm Road                             | Yes           | Medium            |                                  |                                |
| 17243                  | High                 | lpswich            | Town Farm Road                             | Yes           | Medium            |                                  |                                |
| 17246                  | High                 | lpswich            | Trustees East side of Castle Hill          | No            | High              |                                  |                                |
| 17329                  | High                 | Newbury            | Route 1A                                   | Yes           | High              | Yes                              |                                |
| 17330                  | High                 | Newbury            | Route 1A                                   | Yes           | High              | Yes                              |                                |
| 17331                  | High                 | Newbury            | River Front                                | Yes           | Medium            |                                  |                                |
| 17343                  | High                 | Newbury            | Newman Road                                | Yes           | High              | Yes                              |                                |
| 17462                  | High                 | Rowley             | Red Gate Road                              | Yes           | Medium            | Yes                              |                                |
| 17471                  | High                 | Salisbury          | Rail Trail                                 | No            | High              | 100                              |                                |
| 17472                  | High                 | Salisbury          | Rail Trail                                 | No            | High              |                                  |                                |
| 17473                  | High                 | Salisbury          | Route 1                                    | Yes           | High              |                                  |                                |
| 10108                  | High                 | Salisbury          | State Reservation Road                     | Yes           | Medium            | Yes                              |                                |
| 10100                  | High                 | Salisbury          | State Reservation Road                     | Yes           | Medium            | 103                              |                                |
| 10118                  | High                 | Salisbury          | State Reservation Road                     | Yes           | Medium            | Yes                              |                                |
| 10110                  | High                 | Salisbury          | Route 1 (Town Creek)                       | Yes           | High              | 103                              | Design                         |
| 10104                  | High                 | Salisbury          | Ferry Road                                 | Yes           | High              | Yes                              | Design                         |
| 17474                  | High                 | Salisbury          | Old County Road                            | Yes           | Medium            | Yes                              | Design                         |
| 17475                  | High                 | Salisbury          | Old County Road                            | Yes           | Medium            | Yes                              |                                |
| 17477                  | High                 | Salisbury          | March Road                                 | Yes           | High              | Yes                              |                                |
| 17478                  | High                 | Salisbury          | 1st Street                                 | Yes           | High              | Yes                              |                                |
| 436                    | High                 | Essex              | Eastern Ave                                | Yes           | Low               | Yes                              | Priority                       |
| 1192                   | High                 | Newbury            | Hanover Street                             | Yes           | Low               | 163                              | Priority                       |
| 17337                  | High                 | Newbury            | West of Plum Island Drive                  | No            | Medium            |                                  | Priority                       |
| 17344                  | High                 | Newbury            | Kents Island Road                          | No            | Medium            | Yes                              | Priority                       |
| 406                    | High                 | Essex              | Landing Road                               | Yes           | NIP               | 165                              | Priority                       |
| 1196                   | High                 | Newbury            | Newburyport Turnpike                       | Yes           | NIP               |                                  | Priority                       |
| 17336                  | High                 | Newbury            | MBTA - Little River S of Boston Road       | Yes           | NIP               |                                  | Priority                       |
| 17330                  | Medium               | Essex              | Island Road                                | Yes           | Low               | Yes                              | FIOILY                         |
| 17112                  | Medium               | Essex              |                                            | Yes           | Low               | Yes                              |                                |
|                        | Medium               |                    | North of Eastern Ave                       | Yes           |                   | 162                              |                                |
| 17238<br>17328         | Medium               | Ipswich<br>Newbury | Labor in Vain Road<br>Newburyport Turnpike | Yes           | Low<br>Low        |                                  | +                              |
| 17328                  | Medium               |                    | MBTA                                       | Yes           |                   |                                  | +                              |
| 17333                  |                      | Newbury            | Boston Road                                |               | Low               |                                  | +                              |
|                        | Medium               | Newbury            |                                            | Yes           | Low               |                                  | +                              |
| 17347                  | Medium               | Newbury            | West of Middle Road                        | No            | Medium            |                                  | +                              |
| 17460                  | Medium               | Rowley             | MBTA                                       | Yes           | Low               | Vaa                              |                                |
| 17476                  | Medium               | Salisbury          | East of Hayes Street                       | No            | Medium            | Yes                              |                                |
| 430                    | Low                  | Essex              | Main Street                                | Yes           | NIP               |                                  |                                |

|          |          |             |                                       |        | Great Marsh Plan |            |          |
|----------|----------|-------------|---------------------------------------|--------|------------------|------------|----------|
| IRWA     |          |             |                                       |        |                  | Rapid      | Design   |
| Crossing | Crossing |             |                                       | Public | Priority         | Technical  | or Local |
| ID       | Priority | Town        | Road/Site                             | Way    | Marsh            | Assessment | Priority |
| 17111    | Low      | Essex       | Island Road                           | Yes    | NIP              |            |          |
| 17113    | Low      | Essex       | Conomo Point Road                     | Yes    | NIP              |            |          |
| 17115    | Low      | Essex       | East side of Choate Island            | No     | Low              |            |          |
| 17116    | Low      | Essex       | East side of Choate Island            | No     | Low              |            |          |
| 489      | Low      | Gloucester  | Concord Street                        | Yes    | NIP              |            |          |
| 17167    | Low      | Gloucester  | Concord Street                        | Yes    | NIP              |            |          |
| 17168    | Low      | Gloucester  | Concord Street                        | Yes    | NIP              |            |          |
| 861      | Low      | lpswich     | Muddy Run East of Paradise Road       | No     | NIP              |            |          |
| 17235    | Low      | lpswich     | MBTA over Rowley River                | Yes    | NIP              |            |          |
| 17236    | Low      | lpswich     | Choate Bridge (lpswich River)         | Yes    | NIP              |            |          |
| 17237    | Low      | lpswich     | County Street Bridge (Ipswich River)  | Yes    | NIP              |            |          |
| 17239    | Low      | lpswich     | Argilla Road                          | Yes    | NIP              |            |          |
| 17244    | Low      | lpswich     | West of Jeffrey's Neck Road           | No     | NIP              |            |          |
| 17245    | Low      | lpswich     | West of Jeffrey's Neck Road           | No     | NIP              |            |          |
| 17247    | Low      | lpswich     | Argilla Road                          | Yes    | NIP              |            |          |
| 17248    | Low      | lpswich     | Little Neck Road                      | Yes    | NIP              |            |          |
| 1113     | Low      | Newbury     | Newburyport Turnpike                  | Yes    | NIP              |            |          |
| 1147     | Low      | Newbury     | Hay Street                            | Yes    | NIP              |            |          |
| 1138     | Low      | Newbury     | Newman Road                           | Yes    | NIP              |            |          |
| 1111     | Low      | Newbury     | Middle Road                           | Yes    | NIP              |            |          |
| 1204     | Low      | Newbury     | Off_Highfield Road                    | No     | NIP              |            |          |
| 17332    | Low      | Newbury     | Orchard Street                        | Yes    | NIP              |            |          |
| 17338    | Low      | Newbury     | Plum Island Turnpike                  | Yes    | NIP              |            |          |
| 17339    | Low      | Newbury     | Plum Island Turnpike                  | Yes    | NIP              |            |          |
| 17340    | Low      | Newbury     | Plum Island Turnpike                  | Yes    | NIP              |            |          |
| 17341    | Low      | Newbury     | Plum Island Turnpike                  | Yes    | NIP              |            |          |
| 17342    | Low      | Newbury     | Plum Island Turnpike                  | Yes    | NIP              |            |          |
| 17345    | Low      | Newbury     | МВТА                                  | Yes    | NIP              |            |          |
| 17346    | Low      | Newbury     | МВТА                                  | Yes    | NIP              |            |          |
| 17367    | Low      |             | Spofford Street over Merrimack        | Yes    | NIP              |            |          |
| 17368    | Low      |             | Route 1 over Merrimack                | Yes    | NIP              |            |          |
| 17369    | Low      |             | Interstate 95 over Merrimack          | Yes    | NIP              |            |          |
| 17370    | Low      | Newburyport | Plum Island Turnpike near Rolfes Lane | Yes    | NIP              |            |          |
| 1040     | Low      | Rowley      | Glen Street                           | Yes    | NIP              |            |          |
| 1041     | Low      | Rowley      | Fullingmill Road                      | Yes    | NIP              |            |          |
| 1057     | Low      | Rowley      | Newburyport Turnpike (Mill River)     | Yes    | NIP              |            |          |
| 17456    | Low      | Rowley      | Route 1A (West Creek)                 | Yes    | NIP              |            |          |
| 17458    | Low      | Rowley      | MBTA (Sand Creek)                     | Yes    | NIP              |            |          |
| 17459    | Low      | Rowley      | Patmos Road                           | Yes    | NIP              |            |          |
| 17461    | Low      | Rowley      | North of Patmos Road                  | No     | Low              |            |          |
| 10103    | Low      | Salisbury   | Rail Trail (Town Creek)               | No     | Other_AB         |            |          |
| 17479    | Low      | Salisbury   | Rail Trail                            | No     | Low              |            |          |

## Coastal Stabilization Structures

|                       | Structure | Structure |             |                   |                             | Length   |
|-----------------------|-----------|-----------|-------------|-------------------|-----------------------------|----------|
| Structure ID          | Category  | Priority  | Town        | Structure Type    | Location Note               | (Meters) |
| 050-002U-000-044-100  | Public    | High      | Newbury     | Groin/ Jetty      | Plum Island - Dartmouth Way | 32       |
| 036-016-000-002-100   | Public    | Moderate  | lpswich     | Groin/ Jetty      | Plum Island                 | 39       |
| 051-011-000-001B-100  | Public    |           | Newburyport | Bulkhead/ Seawall | Railroad Avenue             | 163      |
| 051-030-000-009-100   | Public    |           | Newburyport | Bulkhead/ Seawall | Water Street                | 27       |
| 051-030-000-013-200   | Public    |           | Newburyport | Revetment         | Simons Beach                | 60       |
| 051-030-000-013-100   | Public    |           | Newburyport | Bulkhead/ Seawall | Simons Beach                | 41       |
| 051-011-000-002-100   | Public    |           | Newburyport | Bulkhead/ Seawall | Gillis Bridge               | 54       |
| 051-030-000-013-300   | Public    |           | Newburyport | Bulkhead/ Seawall | Simons Beach                | 28       |
| 051-054-000-003-400   | Public    |           | Newburyport | Groin/ Jetty      | Cashman Park                | 7        |
| 065-030-000-001-200   | Public    | Moderate  | Salisbury   | Groin/ Jetty      | State Park                  | 39       |
| 050-002U-000-029-100  | Public    | Low       | Newbury     | Groin/ Jetty      | Plum Island Boulevard       | 59       |
| 051-054-000-003-200   | Public    | Low       | Newburyport | Revetment         | Cashman Park                | 134      |
| 051-054-000-003-100   | Public    | Low       | Newburyport | Revetment         | Cashman Park                | 178      |
| 051-011-000-001B-400  | Public    | Low       | Newburyport | Bulkhead/ Seawall | Railroad Avenue             | 37       |
| 051-011-000-001B-300  | Public    | Low       | Newburyport | Bulkhead/ Seawall | Railroad Avenue             | 72       |
| 051-011-000-001B-200  | Public    | Low       | Newburyport | Bulkhead/ Seawall | Railroad Avenue             | 97       |
| 051-012-000-009-100   | Public    | Low       | Newburyport | Bulkhead/ Seawall | Fish Coop                   | 86       |
| 051-026-000-028-100   | Public    | Low       | Newburyport | Bulkhead/ Seawall | Harrison Street Joppa Park  | 276      |
| 051-012-000-009-200   | Public    | Low       | Newburyport | Bulkhead/ Seawall | Harbor Master Office Area   | 24       |
| 051-012-000-009-300   | Public    | Low       | Newburyport | Revetment         | Harbor Master Building      | 18       |
| 051-054-000-003-300   | Public    | Low       | Newburyport | Revetment         | Cashman Park                | 263      |
| 065-007-000-015-200   | Public    | Low       | Salisbury   | Groin/ Jetty      | Gillis Bridge               | 38       |
| 065-007-000-010-100   | Public    | Low       | Salisbury   | Bulkhead/ Seawall | First Street                | 77       |
| 065-030-000-001-400   | Public    | Low       | Salisbury   | Groin/ Jetty      | State Park                  | 12       |
| 065-030-000-001-300   | Public    | Low       | Salisbury   | Bulkhead/ Seawall | State Park                  | 628      |
| 065-030-000-001-100   | Public    | Low       | Salisbury   | Revetment         | Merrimac River              | 159      |
| 065-007-000-015-100   | Public    | Low       | Salisbury   | Revetment         | Gillis Bridge               | 64       |
| 107-259-000-004-001   | Private   | NA        | Gloucester  | Groin/Jetty       |                             | 10       |
| 144-015A-013-000-001  | Private   | NA        | lpswich     | Groin/Jetty       |                             | 19       |
| 144-015D-014-000-001  | Private   | NA        | lpswich     | Revetment         |                             | 44       |
| 144-015D-029-000-001  | Private   | NA        | lpswich     | Bulkhead/Seawall  |                             | 49       |
| 144-024A-097-000-001  | Private   | NA        | lpswich     | Bulkhead/Seawall  |                             | 20       |
| 144-024A-097-000-002  | Private   | NA        | lpswich     | Revetment         |                             | 304      |
| 144-024A-102-000-001  | Private   | NA        | lpswich     | Bulkhead/Seawall  |                             | 20       |
| 144-024A-106-000-001  | Private   | NA        | lpswich     | Revetment         |                             | 146      |
| 144-024A-112-000-001  | Private   | NA        | lpswich     | Bulkhead/Seawall  |                             | 40       |
| 144-024A-111-000-001  | Private   | NA        | lpswich     | Bulkhead/Seawall  |                             | 21       |
| 144-024C-069-000-001  | Private   | NA        | lpswich     | Revetment         |                             | 601      |
| 144-024C-069-011-001  | Private   | NA        | lpswich     | Bulkhead/Seawall  |                             | 110      |
| 144-024C-069-000-002  | Private   | NA        | lpswich     | Revetment         |                             | 89       |
| 144-024C-069-000-003  | Private   | NA        | lpswich     | Revetment         |                             | 24       |
| 144-024C-069-000-004  | Private   | NA        | lpswich     | Bulkhead/Seawall  |                             | 28       |
| 144-023D-052C-000-001 | Private   | NA        | lpswich     | Groin/Jetty       |                             | 14       |
| 144-023D-086-000-001  | Private   | NA        | lpswich     | Revetment         |                             | 33       |
| 144-023D-052D-000-001 | Private   | NA        | lpswich     | Revetment         |                             | 18       |
| 144-023D-052K-000-001 | Private   | NA        | lpswich     | Revetment         |                             | 139      |

|                      | Structure | Structure |             |                  |               | Length   |
|----------------------|-----------|-----------|-------------|------------------|---------------|----------|
| Structure ID         | Category  | Priority  | Town        | Structure Type   | Location Note | (Meters) |
| 144-000-000-000-001  | Private   | NA        | lpswich     | Groin/Jetty      |               | 80       |
| 144-034-002-000-001  | Private   | NA        | lpswich     | Revetment        |               | 52       |
| 144-024C-069-000-005 | Private   | NA        | lpswich     | Revetment        |               | 18       |
| 144-024C-069-000-006 | Private   | NA        | Ipswich     | Bulkhead/Seawall |               | 55       |
| 144-024C-069-000-007 | Private   | NA        | Ipswich     | Revetment        |               | 70       |
| 144-024C-195-000-001 | Private   | NA        | lpswich     | Bulkhead/Seawall |               | 30       |
| 205-U04-000-078-001  | Private   | NA        | Newbury     | Bulkhead/Seawall |               | 29       |
| 205-U04-000-077-001  | Private   | NA        | Newbury     | Revetment        |               | 17       |
| 205-U04-000-074-001  | Private   | NA        | Newbury     | Bulkhead/Seawall |               | 71       |
| 205-U04-000-072-001  | Private   | NA        | Newbury     | Bulkhead/Seawall |               | 32       |
| 205-U04-000-070-001  | Private   | NA        | Newbury     | Bulkhead/Seawall |               | 21       |
| 205-U04-000-069-001  | Private   | NA        | Newbury     | Bulkhead/Seawall |               | 23       |
| 205-U04-000-067-001  | Private   | NA        | Newbury     | Revetment        |               | 34       |
| 205-U04-000-066-001  | Private   | NA        | Newbury     | Bulkhead/Seawall |               | 10       |
| 205-U04-000-009-001  | Private   | NA        | Newbury     | Revetment        |               | 12       |
| 205-U04-000-003-001  | Private   | NA        | Newbury     | Revetment        |               | 113      |
| 205-U03-000-166-001  | Private   | NA        | Newbury     | Revetment        |               | 43       |
| 205-U03-000-133-001  | Private   | NA        | Newbury     | Revetment        |               | 42       |
| 205-U03-000-123-001  | Private   | NA        | Newbury     | Revetment        |               | 38       |
| 205-U03-000-187-001  | Private   | NA        | Newbury     | Groin/Jetty      |               | 19       |
| 205-U03-000-163-001  | Private   | NA        | Newbury     | Bulkhead/Seawall |               | 26       |
| 205-U03-000-162-001  | Private   | NA        | Newbury     | Bulkhead/Seawall |               | 15       |
| 205-U03-000-128-001  | Private   | NA        | Newbury     | Revetment        |               | 19       |
| 205-U03-000-129-001  | Private   | NA        | Newbury     | Bulkhead/Seawall |               | 18       |
| 205-U01-000-010-001  | Private   | NA        | Newbury     | Groin/Jetty      |               | 45       |
| 206-077-000-018-001  | Private   | NA        | Newburyport | Bulkhead/Seawall |               | 60       |
| 206-077-000-015-001  | Private   | NA        | Newburyport | Revetment        |               | 18       |
| 206-077-000-011-001  | Private   | NA        | Newburyport | Bulkhead/Seawall |               | 53       |
| 206-077-000-010-001  | Private   | NA        | Newburyport | Revetment        |               | 25       |
| 206-077-000-006-001  | Private   | NA        | Newburyport | Bulkhead/Seawall |               | 39       |
| 206-077-000-021-001  | Private   | NA        | Newburyport | Bulkhead/Seawall |               | 55       |
| 206-076-000-085-001  | Private   | NA        | Newburyport | Revetment        |               | 69       |
| 206-076-000-052-001  | Private   | NA        | Newburyport | Bulkhead/Seawall |               | 40       |
| 206-076-000-036-001  | Private   | NA        | Newburyport | Bulkhead/Seawall |               | 41       |
| 206-076-000-035-001  | Private   | NA        | Newburyport | Revetment        |               | 25       |
| 206-076-000-019-001  | Private   | NA        | Newburyport | Bulkhead/Seawall |               | 27       |
| 206-076-000-018-001  | Private   | NA        | Newburyport | Revetment        |               | 27       |
| 206-077-000-125-001  | Private   | NA        | Newburyport | Groin/Jetty      |               | 24       |
| 206-077-000-076-001  | Private   | NA        | Newburyport | Bulkhead/Seawall |               | 54       |
| 259-035-000-224-001  | Private   | NA        | Salisbury   | Revetment        |               | 21       |
| 259-035-000-234-001  | Private   | NA        | Salisbury   | Bulkhead/Seawall |               | 20       |

## Appendix 5 – Trout Unlimited Modeling

Trout Unlimited 2017 report including hydraulic capacity modeling for non-tidal crossings.

Trout Unlimited, 2017. Parker-Ipswich-Essex Watersheds Stream Crossing Vulnerability Assessment Project: Final Report

Available for download at: <u>http://pie-rivers.org/documents/TUPIEBarriers-2017.pdf</u>